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Abstract

Economic predictions often hinge on two intuitive premises: agents rule out the possibility

of others choosing unreasonable strategies (‘strategic reasoning’), and prefer strategies that

hedge against unexpected behavior (‘cautiousness’). These two premises conflict and this un-

dermines the compatibility of usual economic predictions with reasoning-based foundations.

This paper proposes a new take on this classical tension by interpreting cautiousness as ro-

bustness to ambiguity. We formalize this via a model of incomplete preferences, where (i) each

player’s strategic uncertainty is represented by a possibly non-singleton set of beliefs and (ii)

a rational player chooses a strategy that is a best-reply to every belief in this set. We show

that the interplay between these two features precludes the conflict between strategic reason-

ing and cautiousness and therefore solves the inclusion-exclusion problem raised by Samuelson

(1992). Notably, our approach provides a simple foundation for the iterated elimination of

weakly dominated strategies.

Keywords: Game theory, decision theory, ambiguity, Knightian uncertainty, incomplete pref-

erences, Bayesian rationality, cautiousness, iterated admissibility.

JEL Classification: C72, D82.

1 Introduction

Economists commonly use iterated strategy elimination procedures as solution concepts

in games. Such procedures thus constitute one of the cornerstones for modeling agents’

behavior in economic theory. The predictive power of iterated elimination procedures is in

general lower than that of equilibrium-related notions; however, since the latter requires

players to correctly forecast their opponents’ behavior (see Aumann and Brandenburger,

1995), the former seems more appropriate in situations of multiple equilibria wherein either
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the players or the economic analyst lack accurate data about past play or such data appears

uninformative about future behavior.1 For instance, this is the case in many application

of auction theory, e.g., wireless spectrum, carbon emission rights and online advertising.2

Consequently, thorough understanding of the forces behind iterated elimination is relevant

from both a purely theoretical perspective and a more applied point of view, and is key to

effective mechanism design and correct identification in empirical analyses.3

The conceptual appeal of iterated elimination procedures is that they carry the intu-

itive game-theoretic appeal of strategic reasoning : if a player is certain that some of her

opponent’s strategies are not going to be played, then she might deem some of her own

strategies to be unreasonable.4 However, as discussed in Samuelson’s (1992) classic analy-

sis, strategic reasoning is in conflict with the criterion of cautiousness, which dictates that

players favor strategies that, ceteris paribus, hedge against unexpected behavior. If players

are modeled as expected utility maximizers, the clash seems inescapable: Strategic reason-

ing requires each player i’s beliefs to assign zero probability to some of the strategies of

i’s, while cautiousness requires player i’s decision to be sensitive to those strategies that

receive zero probability (and are therefore of negligible importance for the maximization

problem). Given that economic modeling often invokes the avoidance of weakly dominated

strategies—a specific kind of cautiousness—as a criterion for equilibrium selection,5 the

seemingly mutually exclusive nature of strategic reasoning and cautiousness requires clar-

ification. Such an understanding is desirable in particular in scenarios where behavior is

likely to be reasoning-based and cautiousness plays a role.

This paper proposes a new take on this longstanding problem by suggesting a novel

theoretical foundation for the interplay between strategic reasoning and cautiousness. The

1In Dekel and Fudenberg’s (1990) words (p. 243): “Nash equilibrium and its refinements describe situa-
tions with little or no ‘strategic uncertainty,’ in the sense that each player knows and is correct about the
beliefs of the other players regarding how the game will be played. While this will sometimes be the case,
it is also interesting to understand what restrictions on predicted play can be obtained when the players’
strategic beliefs may be inconsistent, that is, using only the assumption that it is common knowledge that
the players are rational.”

2See Milgrom (1998), Cramton and Kerr (2002) and Varian (2007), respectively.
3See Bergemann and Morris (2009, 2011); Bergemann, Morris and Tercieux (2011) and Aradillas-Lopez

and Tamer (2008), respectively.
4This is clearly exemplified by the informal argument for competitive prices in Bertrand duopoly models.

Consider a market consisting of profitable, identical firms A and B: If A slightly lowers its mark-up it should
absorb all the demand and increases its profit; now, this is easy to forecast by B, which might in turn decide
to lower its mark-up more than slightly and thus absorb itself all the demand and increase her profit with
respect to the losses obtained under A’s, hypothetical, initial slight cut. Obviously, this logic leads to the
standard zero mark-up conclusion. Sketches of this elementary intuition in modern economic theory can be
traced back to Keynes (1936): “It is not a case of choosing those [faces] that, to the best of one’s judgment,
are really the prettiest, nor even those that average opinion genuinely thinks the prettiest. We have reached
the third degree where we devote our intelligences to anticipating what average opinion expects the average
opinion to be. And there are some, I believe, who practice the fourth, fifth and higher degrees.”

5E.g., Kohlberg and Mertens (1986), Palfrey and Srivastava (1991), Feddersen and Pesendorfer (1997),
or Sobel (2017, 2019).
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analysis by Samuelson (1992) clearly shows that two ingredients are necessary to overcome

this tension: First, multiple beliefs are needed to account for epistemic conditions that

would be mutually excluding if required to be satisfied by a single belief. Second, the

best-reply needs to be sensitive to all these beliefs. We achieve this within our framework

by augmenting the underlying standard decision-theoretic foundation for each player by

allowing for incomplete preferences à la Bewley (2002) where: (i) Each player’s strategic

uncertainty is represented by a possibly non-singleton set of beliefs thus allowing for ambi-

guity, and (ii) a rational player chooses a strategy that is a best-reply to every belief in her

set, so that the resulting choice is robust to the possible ambiguity faced by the player.6

Under this set-up, and inspired by Brandenburger, Friedenberg and Keisler (2008), we say

that a player assumes certain behavior by her opponents if at least one of the beliefs in her

set has full-support on the collection of states representing such behavior. Consequently,

the introduction of ambiguity and the requirement of robustness give great flexibility: It is

possible for a player to assume certain behavior and, simultaneously, assume certain more

restrictive behavior. If the player is also rational, her choice needs to be a best-reply to

both of these beliefs. Hence, in particular, the tension between strategic reasoning and

cautiousness is solved: A player can be strategically sophisticated by having one belief that

assigns zero probability to her opponents playing dominated strategies, and at the same

time cautious by having another belief that assigns positive probability to every strategy of

her opponents. Thus, our model overcomes the problem as identified by Samuelson (1992)

since it allows precisely for the two necessary ingredients.

Based on the above, we build a framework that provides reasoning-based foundations

for iterated admissibility—the iterated elimination of weakly dominated strategies. In The-

orem 1 we show that, when type spaces are belief-complete (roughly speaking, rich enough

to capture any possible belief hierarchy), iterated admissibility characterizes the behav-

ioral implications of rationality, cautiousness, and common assumption thereof. From our

characterization, it is easy to see that the foundations of iterated admissibility necessarily

require the presence of ambiguity whenever strategic reasoning has any bite. If the elimina-

tion procedure consists of multiple rounds, the set of ambiguous beliefs needs to contain a

specific belief with full-support on the set of opponents’ strategies that survive each round.

Theorem 2 provides the analysis for the relaxation of belief-completeness and shows that,

in this case, it is self-admissible sets à la Brandenburger, Friedenberg and Keisler (2008)

which characterize the behavioral implications of rationality, cautiousness and common as-

sumption thereof. Although the main approach in the paper is conceptual and focused on

the link between cautiousness in reasoning-based processes and robustness to ambiguity, the

6Due to incompleteness such a strategy might not exist for a given set of beliefs. In such case we also say
that the player is not rational.
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results provide a methodological contribution for the use of incomplete preferences in game

theory, which is a subject of interest in itself aside from its interpretation as a reflection of

ambiguity.7

The literature studying the conflict between strategic reasoning and cautiousness is epit-

omized by the seminal paper by Brandenburger, Friedenberg and Keisler (2008), who shed

light on the question by building upon the lexicographic probability system approach by

Blume, Brandenburger and Dekel (1991a,b).8 Lexicographic probability systems represent

the uncertainty faced by a decision maker whose preferences depart from standard Bayesian

preferences by allowing violations of the continuity axiom. In this setting, Brandenburger,

Friedenberg and Keisler (2008) provide reasoning-based foundations for finitely many itera-

tions of weakly dominated strategy elimination based on rationality and finite-order assump-

tion of rationality, but also present a celebrated impossibility result: under some standard

technical conditions and generically in all games, common assumption of rationality cannot

be satisfied. This negative result has spurred a line of research concerned with obtaining

sound epistemic foundations for iterated admissibility. Keisler and Lee (2015) and Yang

(2015) propose answers by tweaking topological properties of the modeling of higher-order

beliefs and the notion of assumption, respectively, while Lee (2016) obtains foundations by

proposing a modification in the definition of coherence.9 Catonini and De Vito (2018a)

also provide foundations by introducing a weaker notion of the likeliness-ordering of events

that characterizes the lexicographic probability system, and via an alternative definition

of cautiousness that restricts attention to the payoff-relevant component of the states. In

a slightly different direction, Heifetz, Meier and Schipper (2019) propose a new solution

concept, comprehensive rationalizability, that coincides with iterated admissibility in many

settings and admits epistemic foundations. Within a standard Bayesian decision-theoretic

model, Barelli and Galanis (2013) provide a characterization for iterated admissibility by

introducing an exogenous ‘tie breaking’ criterion. Robustness to ambiguity is studied by

Stauber (2011, 2014) with a different interpretation from ours.

Our paper can be regarded as complementary to the lexicographic probability system

approach as standard Bayesian preferences are also abandoned by dropping completeness

instead of continuity. Both these relaxations allow for multiple beliefs, but while the former

requires a specific order, our model drops the order altogether and allows for multiplicity

7 As argued by Aumann (1962): “Of all the axioms of utility theory, the completeness axiom is perhaps the
most questionable. [. . . ] [W]e find it hard to accept even from the normative viewpoint. Does ‘rationality’
demand that an individual make definite preference comparisons [. . . ]” Previous applications of Bewley’s
(2002) model to game theory include, among others, Lopomo, Rigotti and Shannon (2011, 2014), who study
mechanism design and optimal contracting, respectively.

8Early contributions along the same lines include, for example, Brandenburger (1992) and Stahl (1995).
9Similar to Epstein and Wang (1996), coherency is imposed on the preferences directly, not only on the

beliefs that represent the preferences.
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directly. However, apart from the transparent link between cautiousness and robustness to

ambiguity that our framework allows for, the nice structure of the sets of ambiguous beliefs

representing incomplete preferences has some additional advantages. First, it is easy to

show that rationality and common assumption of rationality is a non-empty event and thus,

that iterated admissibility is properly founded for all games. Second, the definitions and

formalism involved do not require departures from the canonical definition of the objects

involved: (i) The modeling of higher-order beliefs (i.e., the type structures employed),

including the definition of coherence, and the version of assumption that we rely on are

natural extensions of their counterparts in the realm of standard Bayesian preferences;

and (ii) the notion of cautiousness invoked in our theorems is not necessarily restricted to

environments where the sets of states have a specific structure (e.g. games).10 Finally, the

presence of ambiguity via incomplete preferences has been shown to be empirically testable

by recent work by Cettolin and Riedl (2019).

The rest of the paper is structured as follows. First, Section 2 provides an informal,

non-technical overview of the effect of robustness to ambiguity on predictions in games,

and specifically, on iterated admissibility as a solution concept. Section 3 reviews both

the game-theoretic and the decision-theoretic preliminaries and Section 4 introduces the

epistemic framework and the interpretation of strategic cautiousness as a manifestation of

robustness of ambiguity. Section 5 the presents the epistemic characterization results. Sec-

tion 6 concludes. All proofs and purely technical digressions are relegated to the appendices.

2 Non-technical overview

2.1 Examples

To illustrate the intuition behind the usual tension between rationality and cautious behav-

ior and to show how our approach avoids this issue, we present two examples.

Example 1. Consider a two player game with the following payoff matrix:11

0
2

1
0

1
1

0
1

Bob
L R

Ann
T

D

Clearly, no action is strictly dominated for either player, so (standard) rationalizability

predicts {T,D}× {L,R}. However, R is weakly dominated by L. Deleting R will therefore

10Though they are sensitive to topological specifications.
11This is the leading example of Brandenburger, Friedenberg and Keisler (2008) and was introduced by

Samuelson (1992).
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make D strictly dominated in the reduced game. Thus, iterated admissibility has a unique

prediction in this game: (T, L).

Now assume that one wishes to study how players themselves reason about this game. If

Bob is rational and cautious he should play L. Suppose Ann is cautious as well. Therefore

her belief has to put positive probability on Bob playing L and on Bob playing R. However,

if Ann believes that Bob is rational and cautious, then she should rule out Bob playing R.

This is the ’inclusion-exclusion’ problem as identified by Samuelson (1992). On the one

hand, Ann should include R in her belief because she is cautious. On the other hand, she

should exclude R because she believes that Bob is rational and cautious. 3

In our framework, we have more flexibility because players are not Bayesian, but are

allowed to have a (potentially non-singleton) set of beliefs. To see how this relaxation

avoids the tension just described, we provide a slightly more elaborate example, which also

explores the reasoning of the players more explicitly.

Example 2. Again, there are two players, Ann and Bob, who play the following game:

0
2

0
2

1
2

3
2

1
4

1
0

1
2

1
0

1
0

1
4

1
2

1
0

Bob
A B C D

Ann

H

M

L

Now suppose that each player faces ambiguity (as described by Bewley, 2002) about

the strategy choice of their opponent. That is, neither player has a unique belief about

the opponent’s strategy choice, but rather each has a set of beliefs. In particular, suppose

that Ann has a convex closed set of beliefs described by two extreme points. Her first

belief is uniform across all of Bob’s strategies, µ1
A(sB) = 1/4 for sB = A,B,C,D, and her

second (extreme) belief is uniform across A, B, and C only, µ2
A(sB) = 1/3 for sB = A,B,C.

Similarly, Bob faces uncertainty about Ann’s choice. Consider the following set of beliefs for

Bob, which also has two extreme beliefs. The first is uniform across all of Ann’s strategies,

µ1
B(sA) = 1/3 for sA = H,M,L, and the second belief assigns equal probability to H and

M , µ2
B(H) = µ2

B(M) = 1/2.

Let us check what strategies are rational for each player given their beliefs. Preferences

à la Bewley (2002) are incomplete, and for incomplete preferences there is no obvious defi-

nition of rationality: Optimality is a stronger requirement than maximality for incomplete

orders. As stated in the introduction, the solution to the inclusion-exclusion problem re-

quires that a best-reply to be sensitive to all beliefs. Thus, we identify rationality with

optimality so that a rational strategy is a best-reply to all beliefs, i.e. the choice needs to
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be robust to the ambiguity faced by the player. In this example this implies that Ann will

not rationally choose L since it is not a best-reply that is robust to the ambiguity that she

faces. H and M , on the other hand, are best-replies to all beliefs and are therefore rational

choices for Ann. For Bob, only D is not rational because it is not a best-reply to any of

his beliefs. The three other strategies A, B, and C are rational as they are best-replies to

all of his beliefs. Thus, with these sets of beliefs the prediction of the model would corre-

spond to iterated admissibility. This is not a coincidence and foreshadows our results on the

characterization iterated admissibility, explained in more detail below, where the strategic

reasoning is also made explicit. 3

2.2 Heuristic treatment of strategic reasoning

In the previous examplesit can be seen that a set of beliefs enables strategic reasoning and

cautiousness to be incorporated. To study games in general, players need to be allowed to

reason about the reasoning process of other players too. This necessitates the formalizing

of infinite sequences of the following form:

a1: Ann is rational and cautions b1: Bob is rational and cautions
a2: a1 holds and Ann assumes b1 b2: b1 holds and Bob assumes a1

a3: a1 holds and Ann assumes b1 & b2 b2: b1 holds and Bob assumes a1 & a2

. . . . . .

If this infinite sequence holds, we say that there is rationality, cautiousness, and common

assumption thereof (RCCARC).

To study these infinite sequences and to see which strategies are played if they hold,

(epistemic) types need to be introduced for each player. Accordingly, consider TA and TB

as type spaces for Ann and Bob, respectively. Usually, each of Ann’s type tA ∈ TA is

associated with a belief about Bob’s strategy and type, i.e. a probability distribution over

SB × TB. However, the idea here is to model players who face ambiguity, so each type is

associated with a (closed, and convex) set of beliefs about SB × TB. Thus, for a strategy-

type pair of Ann (sA, tA), strategy sA is said to be rational if sA is a best-reply to all of the

beliefs associated with tA. Whether a player is cautious depends only on her beliefs: she

thinks everything is possible. That is, one of her beliefs has full support on the full space

of uncertainty. Thus, we say that Ann’s type tA is cautious if there exists a beliefs in the

associated set of belief which has full support on SB × TB.

For example, consider a type of Ann’s, tA, which has only a singleton set of beliefs {µA}
with support as depicted in Figure 1. For such a cautious type, the question arises of which

strategies are rational. Accordingly, consider the marginal of µA on Bob’s strategy space

SB. This marginal has full support on SB and if Ann is rational, her rational choice has to
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SB

TB µA

Figure 1: Cautiousness

be a best-reply to this marginal. It then follows from Pearce (1984) that she must choose

a strategy which is not weakly dominated.

SB

TB

µ1
A µ2

A
µ3
A

µ4
A

µ5
A

µ6
A...

Figure 2: Rationality, cautiousness, and common assumption thereof.

Now, it is possible to study the infinite sequences described above. In this case the pic-

ture that emerges looks like Figure 2. Here the small area with solid boundary corresponds

to all strategy-type combinations of Bob satisfying RCCARC. Now, set a strategy-type

combination (sA, tA) for Ann. Does this type correspond to RCCARC for Ann? i.e. does

the type satisfy the sequence a1, a2, . . .? It is already known that if a1 holds there needs to

be a belief in the associated set of beliefs which has support as µ1
A. Next, it is considered

that Ann assumes b1. This rules out some of Bob’s strategy-type pairs, but also requires tA

to have a belief which has full support on the remaining pairs. Thus, in the associated set

of beliefs there needs to a belief µ2
A. In the next step, Ann is considered to assume b1 and

b2. Similar reasoning applies and there needs to be a belief like µ3
A in the set of beliefs cor-

responding to tA. This procedure can now be iterated (as indicated in the picture) to verify

whether the type tA corresponds to RCCARC for Ann. Only finite games are considered

here so at some stage n this iteration no longer rules out any strategies for Bob. However,
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it might be the case that at every step there are still some types of Bob’s that need to be

ruled out. In the worst case there needs to be a different belief for each iteration as the

support of each belief is changing over the course of the sequence. However, this does not

cause a problem. For each type the set of beliefs could be potentially very large.12 Since

such large sets of beliefs are within the framework under consideration, the event RCCARC

is not empty. Thus we do not get a negative result, as Brandenburger, Friedenberg and

Keisler (2008) find in a different framework. To illustrate more specifically how this analysis

works, types are added explicitly for the example considered above.

Example 2 (continuing from p. 6). Consider the following type space Ti =
{
t0i , t

1
i , t

2
i , t

3
i

}
for i = A,B and define (with some abuse of notation) the following beliefs on SB × TB:

µ1
A(sB, tB) = 1/16, for all (sB, tB) ∈ SB × TB,

µ2
A(sB, tB) = 1/9, for all (sB, tB) ∈ {A,B,C} × {t1B, t2B, t3B}, and

µ3
A(sB, t

3
B) = 1/3, for all sB ∈ {A,B,C}.

Similarly, define the following beliefs on SA × TA:

µ1
B(sA, tA) = 1/12 for all (sA, tA) ∈ SA × TA,

µ2
B(sA, t

1
A) = 1/6, for all sA ∈ SA, µ2

B(sA, tA) = 1/8, for all (sA, tA) ∈ {H,M} × {t2A, t3A}, and

µ3
B(sA, t

3
A) = 1/2, for all sA ∈ {H,M}.

Given these beliefs, define the set of beliefs Mi(ti) for each type as follows: for i = A,B set

Mi(t
0
i ) =

{
µ3
i

}
, Mi(t

1
i ) =

{
µ1
i

}
, Mi(t

2
i ) is the convex hull of µ1

i and µ2
i , and Mi(t

3
i ) is the

convex hull of µ1
i , µ

2
i , and µ3

i

Now, it is possible to analyze the infinite sequences a1, a2, . . . and b1, b2, . . . introduced

above. a1 is the event that Ann is rational and cautious, so we must collect all strategy-type

pairs which satisfy the full-support requirement (cautiousness) and the requirement that the

strategy is a best-reply to all beliefs of the given type (rationality). Here, all types but t0i

have at least one belief with full support on S−i × T−i. Together with rationality this gives

that the following strategy-type pairs correspond to a1: SA × {t1A} ∪ {H,M} × {t2A, t3A}.
Similarly, b1 corresponds to {A,B,C} × {t1B, t2B, t3B}. So both a1 and b1 rule out some

strategy-type pairs and in particular the weakly dominated strategy D is ruled out. Next,

to get to a2, we want to find all types of Ann that assume b1. That is, all types of Ann that

have at least one belief with full-support on {A,B,C}×{t1B, t2B, t3B}. Only t2A and t3A satisfy

this requirement, leaving {H,M}×{t2A, t3A} corresponding to a2. For Bob, it emerges that b2

corresponds to {A,B,C}×{t2B, t3B}. Again, note that in this step the interactive reasoning

12That is, not finitely generated sets.
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leads to the ruling out of L, which is weakly dominated after elimination of D. In the

next step (i.e. a3 and b3), types t2i are ruled out, but no more strategies. This construction,

however, would lead to the conclusion that a4 and b4 do not correspond to any strategy-type

pairs. The solution, and this is the main idea of how to prove one direction of Theorem 1,

is to add more types. For each iteration add another type with full support on the previous

rounds (similar to types t3i ). This gives an infinite (but countable) number of types and only

the “limiting” type corresponds to RCCARC. This argument shows that the illustration in

Figure 2 is accurate in the sense that for higher order iterations the supported strategies

are constant, but only types are removed in each round.

Theorem 2 provides a direct (and hence different) way to construct finite type spaces so

that for strategy-type pairs satisfying RCCARC the strategies of iterated admissibility (or

those of any other self-admissible set) are obtained. 3

3 Preliminaries

This section presents the main standard concepts and formalism related to game and

decision theory. The object of study is the inclusion-exclusion problem inherent in the

iterated elimination of weakly dominated strategies raised by Samuelson (1992). Thus,

Section 3.1 recalls the formalization of strategic-form games, iterated admissibility (Luce

and Raiffa, 1957; Moulin, 1979) and self-admissible sets (Brandenburger, Friedenberg and

Keisler, 2008). However, our analysis models players as individual decision makers whose

beliefs may display ambiguity via incomplete preferences. Section 3.2 recalls the necessary

decision-theoretical toolbox and Bewley’s (2002) model of incomplete preferences as for-

malized by Gilboa, Maccheroni, Marinacci and Schmeidler (2010), and highlights its key

features.13

3.1 Games and iterated strategy elimination

A game consists of a tuple G := 〈I, (Si, ui)i∈I〉 where I is a finite set of players, and for

each player i there is a finite set of (pure) strategies Si and a utility function ui : S → R,

where S :=
∏
i∈I Si denotes the set of strategy profiles. For each player i a randomization

of own strategies σi ∈ ∆(Si) is referred to as a mixed strategy,14 and a probability measure

µi ∈ ∆ (S−i), where S−i :=
∏
j 6=i Sj , as a conjecture. When necessary, with some abuse of

notation, we use si to refer to the degenerate mixed strategy that assigns probability one

13Section A in the appendix provides further details on the decision theoretic foundations and on how to
envision games as decision problems, as is standard in the literature since Tan and da Costa Werlang (1988)
(see Di Tillio (2008) for a more detailed formulation).

14Throughout the paper, for any topological space X, as usual, ∆ (X) denotes the set of probability
measures on the Borel σ-algebra of X.
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to si. Each conjecture µi and possibly mixed strategy σi naturally induce expected utility

Ui(µi;σi) and based on this, each player i’s best-reply correspondence is defined by assigning

to each conjecture µi the subset of pure strategies BRi(µi) that maximize its corresponding

expected utility.15

Following the duality results of Pearce (1984), we use the best-reply correspondence

directly to define iterated admissibility whose foundations are then studied in Section 5.

Strategy si is iteratively admissible if it survives the iterated elimination of weakly dom-

inated strategies; i.e., if it is not weakly dominated given strategy profiles S−i × Si, it is

not weakly dominated given strategy profiles W 1
−i ×W 1

i consisting only of strategies sur-

viving the first elimination round, etc. Thus, formally, strategy si is iteratively admissible

if si ∈W∞i :=
⋂
n≥0W

n
i , where W 0

i := Si and for any n ∈ N,

Wn
i :=

si ∈W
n−1
i

∣∣∣∣∣∣∣∣∣
There exists some µi ∈ ∆(S−i) such that:

(i) supp µi =
∏
j 6=iW

n−1
j ,

(ii) si ∈ BRi(µi)

 .

Finally, that set of strategy profiles Q =
∏
i∈I Qi is said to be a self-admissible set (SAS)

if for every player i the following three conditions are satisfied:

(i) No si ∈ Qi is weakly dominated given S−i × Si.

(ii) No si ∈ Qi is weakly dominated given Q−i × Si.

(iii) For every si ∈ Qi and every mixed strategy σi such that Ui(s−i;σi) = Ui(s−i; si) for

every s−i, it holds that supp σi ⊆ Qi.

The connection between the notions of self-admissibility and iterated admissibility is imme-

diately apparent: the set of iteratively admissible strategy profiles is a self-admissible set of

game G, but in general there are other self-admissible sets. For details see Brandenburger

and Friedenberg (2010), who also study properties of self-admissible sets for specific (classes

of) games.

3.2 Decision problems and incomplete preferences

We follow the reformulation of Anscombe and Aumann’s (1963) framework by Fishburn

(1970). The decision maker faces decision environment (Z,Θ) where: (i) Z is a set of

outcomes, which can be informally understood as the elements that will ultimately yield

direct utility to the decision maker; and (ii) Θ is a set of states (of the world) about

15That is, given conjecture µi the expected utility is Ui(µi;σi) :=
∑

(s−i;si)∈S µi[s−i] · σi[si] · ui(s−i; si)
for each possibly mixed strategy σi, and the set of best-replies is BRi(µi) := arg maxsi∈Si

Ui(µi; si).



12

which the decision maker might face uncertainty, and which may affect how her choices

relate to outcomes. We refer to randomizations of outcomes, ` ∈ ∆(Z), as lotteries. A

preference is a binary relation % over the set of acts, F , which is the collection of all maps

f : Θ → ∆(Z) that assign a lottery to each state. M (Θ) denotes the set of closed and

convex nonempty subsets of Θ.16 Throughout the paper we focus on preferences which we

call Bewley preferences, since they were introduced by Bewley (2002).17 The main point

of departure from the preferences of a standard Bayesian decision maker (i.e., one whose

preferences satisfy the axioms by Anscombe and Aumann, 1963) is that completeness of the

preferences is dropped. Theorem 1 by Gilboa, Maccheroni, Marinacci and Schmeidler (2010)

provides the following convenient representation for these preferences:18 % is a Bewley

preference if and only if there exist a non-constant utility-function u : Z → R and a set of

ambiguous beliefs M ∈M (Θ) such that for every pair of acts f, g,19

f % g ⇐⇒
∫

Θ
Ef(θ)[u(z)]dµ ≥

∫
Θ
Eg(θ)[u(z)]dµ for every µ ∈M.

A decision maker’s epistemic attitude with respect to the source of uncertainty may not be

represented by a single belief, as in the standard case, but rather by a possibly non-singleton

set of beliefs that reflects the decision maker’s possible ambiguity towards that source of

uncertainty. As argued extensively in Section 5, this is key to resolving the inclusion-

exclusion problem. With such preferences the decison maker is allowed to have beliefs with

different supports, but also needs to respond robustly to her ambiguity by best-replying to

all of her beliefs: for act f to be regarded as at least as good as another act g, the expected

utility for f must be at least as high as the expected utility for g for every belief in the set of

ambiguous beliefs. Notably, recent work by Cettolin and Riedl (2019) presents experimental

tools to test whether the preferences display this form of ambiguity via incompleteness.

16To be more mathematically precise, Z is assumed to be finite, Θ is compact and metrizable and the
elements of F , simple and measurable in the Borel σ-algebra of Θ. Space Mi(S−i × T−i) is endowed with
the topology induced by the Hausdorff metric and is therefore compact and metrizable.

17 Actually we rely on a more modern version by Gilboa, Maccheroni, Marinacci and Schmeidler (2010)
of Bewley’s (2002) original preferences. Bewley’s (2002) version requires the decision-maker to have a
designated default act always chosen unless ranked strictly lower than some alternative. This is commonly
known in the literature as inertia (see, Bewley, 2002, or Lopomo, Rigotti and Shannon, 2011). Furthermore,
the version of Gilboa, Maccheroni, Marinacci and Schmeidler (2010) allows for infinite state spaces which
are necessary in our framework.

18Details about the axioms on preferences and how to map the game theoretic setup to a decision envi-
ronment can be found in Appendix A.

19More precisely, M is non-empty closed and convex. Moreover, M is unique and u is unique up to positive
affine transformations.
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4 Reasoning in games

For the rest of the paper we consider game G to be fixed and therefore drop most explicit

mentions to it. In this section we present the epistemic framework that we employ below

to establish foundations for iterated admissibility in Section 5. Formally, for each player we

specify a choice and a representation of her beliefs on her opponents’ strategies, her beliefs

on her opponents’ beliefs over their opponents’ strategies, etc. These elements suffice to

assess whether under such specifications, the player is being rational, has preferences that

exhibit ambiguity (i.e. multiple beliefs) or has certain higher-order beliefs on her opponents’

rationality and the presence of ambiguity in their preferences. The question then is which

precise constraints on rationality and higher-order beliefs on opponents’ rationality induce

the behavior captured by iterated admissibility. Section 5 provides an answer based on the

formalism developed in this section.

However, some previous methodological work is required. As seen above, when am-

biguity via incomplete preferences is allowed for, the representation of uncertainty may

require non-singleton sets of beliefs. It follows that standard type structures as introduced

by Harsanyi (1967–1968) and standard belief-hierarchies à la Mertens and Zamir (1985) are

not suitable for analyzing strategic reasoning: They fail to capture the possibility of ambi-

guity. Instead, we rely on a modified version of type structure that accounts for ambiguous

beliefs.20 Thus, in Section 4.1 we first introduce these ambiguous type structures. We build

on them and then, in Section 4.2, define the restrictions on behavior and beliefs required

for the results in Section 5.

4.1 Ambiguous type structures

The study of strategic reasoning requires an instrument that formalizes players’ beliefs

about their opponents’ choices, players’ beliefs about their opponents’ beliefs about their

opponents’ choices and so on. When players have complete preferences this hierarchical

uncertainty can easily be represented through type structures. Thus, it is convenient to ex-

tend the definition of the latter so that can deal with the possibility of ambiguity. Formally,

an ambiguous type structure consists of a list T := 〈Ti,Mi〉i∈I where for each player i there

is:21

(i) A set of (ambiguous) types Ti.

(ii) An ambiguous belief map Mi : Ti → Mi(S−i × T−i), where T−i :=
∏
j 6=i Tj , that

associates each type with ambiguous beliefs on opponents’ strategy-type pairs.

20These type structures are regarded to Ahn’s (2007) ambiguous hierarchies what Harsanyi’s (1967–1968)
type structures are to Mertens and Zamir’s (1985) belief hierarchies.

21We assume each Ti to be compact and metrizable and each Mi, continuous. See Footnote 40.
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It is easy to see why ambiguous type structures capture the idea of hierarchical reasoning

mentioned at the beginning of the paragraph. For any player i’s type ti it is possible to

compute the following by recursive marginalization:22

(1) First-order ambiguous beliefs that represent type ti’s uncertainty about her oppo-

nents’ strategies, Mi,1(ti) ∈Mi,1 := Mi(S−i), which is easily obtained by taking the

marginals on S−i of the beliefs in Mi(ti).

(2) Second-order ambiguous beliefs that represent type ti’s uncertainty about her oppo-

nents’ strategy-first-order ambiguous beliefs pairs, Mi,2(ti) ∈Mi,2 := Mi(
∏
j 6=i(Sj ×

Mj,1)).

· · ·

(n) nth-order ambiguous beliefs that represent type ti’s uncertainty about her opponents’

strategy-(n − 1)th-order ambiguous beliefs pairs, Mi,n(ti) ∈ Mi,n := Mi(
∏
j 6=i(Sj ×

Mj,n−1)).

· · ·

Ambiguous type structure T is said to be complete if every map Mi is surjective, that is, if

for every possible ambiguous beliefs the ambiguous type structure may admit, there exists

some type that is mapped to such ambiguous beliefs.23

4.2 Behavioral and epistemic conditions

The analysis of each player i’s reasoning is focused on strategy-type pairs (si, ti), which

specify both player i’s choice, and as described above, her ambiguous beliefs on her oppo-

nents’ choices, her ambiguous beliefs on her opponents’ first-order ambiguous beliefs, etc.

Thus, each strategy-type pair (si, ti) enables questions such as the following to be addressed:

Is player i rational given her beliefs? Do her preferences embody some kind of ambiguity?

What are her higher-order beliefs about her opponents’ rationality and ambiguity? Next,

22The conceptual simplicity that follows contrasts the notational complexity that it requires; technically,
for each n ∈ N we have:

Mi,n+1(ti) =

µi ∈ ∆

∏
j 6=i

(Sj ×Mj,n)


∣∣∣∣∣∣∣∣∣

There exists some µ′i ∈Mi(ti) such that:

µi[E] = µ′i

[(∏
j 6=i(idSj ×Mj,n)

)−1

(E)

]
for every measurable E ⊆

∏
j 6=i Sj ×Mj,n

 .

23As shown by Ahn (2007), the answers to the following modified questions in (Dekel and Siniscalchi, 2015,
p. 629): “Is there a[n] [ambiguous] type structure that generates all [ambiguous] hierarchies of beliefs? Is
there a[n] [ambiguous] type structure into which every other [ambiguous] type structure can be embedded?”
are yes, and yes. Within a Bayesian framework, Friedenberg (2010) studies such a richness requirement more
generally.
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we first formalize the notion of rationality that we employ (Section 4.2.1). Second, we in-

troduce our formalization of cautiousness as a manifestation of ambiguity (Section 4.2.2).

Finally, we define the appropriate tool to impose restrictions on higher-order beliefs (Section

4.2.3), which is a generalization to Bewley preferences of the usual notion of full-support

belief for standard Bayesian preferences.

4.2.1 Rationality

We say that strategy si is rational for type ti if si is a best-reply to every first-order

ambiguous belief induced by ti; thus, the set of strategy-type pairs in which player i is

rational is formalized as follows:

Ri :=

(si, ti) ∈ Si × Ti

∣∣∣∣∣∣si ∈
⋂

µi∈Mi(ti)

BRi(margS−iµi)

 .

Note that the definition implicitly requires each type ti, in order to be eligible for rational

behavior, to satisfy that the intersection of the best-replies to the ambiguous first-order

beliefs induced by it is non empty.24 This is a consistency requirement in the vein of

Bayesian updating for conditional probability systems in the literature of dynamic games:

When a conditional probability system fails to satisfy Bayesian updating it may not admit

sequential best-replies.25

4.2.2 Cautiousness and ambiguity

We next argue that cautiousness, intuitively thought of as the decision maker considering

every state of the world when deciding which choice is best, can be interpreted as a product

of ambiguity in the sense that types that exhibit cautiousness tend to represent preferences

that also display ambiguity. We first formalize the notion of cautiousness that takes part

in the characterizations result in Section 5 and then discuss its link to ambiguity.26

24We discuss this requirement in detail in Appendix A, where we first separate the condition that en-
sures non-emptiness of the intersection of best replies (decisiveness) from rationality per se, and provide a
behavioral characterization for it.

25We thank Pierpaolo Battigalli for this observation. This issue, which refers to the distinction between
a choice being optimal or undominated, is discussed in further detail in Section A in the appendix, which
also provides a behavioral foundation for a non-empty intersection.

26We note that all of the following analyses could have been carried out employing a slightly weaker notion
of cautiousness than the one introduced in Definition 1. In principle it would suffice to require full support
on S−i rather than S−i × T−i. Our reason for opting for the stronger notion is twofold: (i) It does not
prevent our characterization from dispensing with impossibility issues à la Brandenburger, Friedenberg and
Keisler (2008) (see Section 5.3), so it is clear that it is not modifications in the notion of cautiousness that
enable for this to be achieved; and (ii) since it does not apply only to state spaces with product structure,
it has a more general decision-theoretic foundation.
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Definition 1 (Cautiousness). Let G be a game and T , an ambiguous type structure. Then,

for any player i and any type ti we say that type ti is cautious if at least one belief in Mi(ti)

has full-support on S−i × T−i. We denote the set of player i’s strategy-type pairs in which

the type is cautious by Ci.

If at an intuitive level cautiousness is seen as the idea that a decision maker takes every

possible contingency into account, then that is present in this definition. Cautiousness

requires, loosely speaking, that every state is taken into account by the decision maker.27

The link with ambiguity is easy to see. In principle, it is possible for a type to display

cautiousness but not ambiguity. This is the case of every type whose set of ambiguous

beliefs consists of a single belief with full-support on S−i × T−i as in Figure 1. However, if

in addition to cautiousness the type also exhibits some form of strategic sophistication in

the sense of having a (different) belief that rules out some proper subset of S−i×T−i, then,

necessarily, the type displays ambiguity: The corresponding ambiguous beliefs a fortiori

contain at least two different beliefs. Hence, the introduction of ambiguity not only enables

strategic reasoning and cautiousness to be made compatible, but is indeed, necessary when

strategic reasoning has any bite.

4.2.3 Assumption

Hereafter we refer to measurable subsets E ⊆ S×T as events. A standard Bayesian decision

maker is said to assume event E when the unique subjective belief induced by her preference

has full-support on E.28 Some changes are in order if this idea is to be extended to Bewley

preferences: The set of ambiguous beliefs may contain beliefs that have different supports.

We say that a Bewleyian decision maker assumes event E when at least one belief in her

set of ambiguous beliefs has full-support on E. Given the inclusion-exclusion problem, it

is natural to consider such a weak version of assumption. As discussed in Section 1, it is

necessary to have multiple beliefs which have potentially different supports to resolve the

tension between strategic reasoning and cautiousness.

Definition 2 (Assumption). Let G be a game and T , an ambiguous type structure. For

any player i, any type ti and any event E−i ⊆ S−i × T−i we say that type ti assumes E−i

if at least one belief in Mi(ti) has full-support on the topological closure of E−i. We denote

the set of player i’s strategy-type pairs in which the type assumes E−i by Ai(E−i).

27Cautiousness is also present in the analysis by Brandenburger, Friedenberg and Keisler (2008). However,
there it is incorporated into the definition of rationality. We find it more transparent to explicitly define the
event when a player is cautious.

28Technically, we are considering the collapse of the notion of assumption (see Brandenburger, Friedenberg
and Keisler, 2008 and Dekel, Friedenberg and Siniscalchi, 2016) under the lexicographic probability system
when the preferences satisfy continuity and the corresponding lexicographic probability system thus collapses
to a single belief.
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Remark 1. Cautiousness as defined in Definition 1 can be restated in terms of assumption:

A type ti is cautious if it assumes S−i × T−i.

5 Iterated admissibility and ambiguous types

This section presents the main results of the paper. Based on the observation made in the

previous section that the presence of ambiguity can reconcile strategic reasoning with cau-

tiousness, we provide foundations for iterated admissibility and self-admissibility in terms

of rationality, cautiousness, and certain higher-order assumption constraints. We provide

those foundations in Section 5.1. Then, in Section 5.2, we discuss the link between iterated

assumption and ambiguity to resolve the inclusion-exclusion problem. Finally, in Section 5.3

we review the seminal impossibility result due to Brandenburger, Friedenberg and Keisler

(2008) within the approach in terms of lexicographic probability systems, recall some of the

responses in the related literature, and explore the connection with our result.

5.1 Epistemic foundation

As mentioned above, the epistemic foundation of iterated admissibility is to be formulated

in terms of rationality, cautiousness, and higher-order assumption restrictions. The set of

strategy-type pairs in which player i exhibits common assumption in rationality and cau-

tiousness is given by CARCi :=
⋂
n≥0CARCi,n, where each CARCi,n is defined recursively

by setting:

CARCi,0 := Si × Ti,

CARCi,n := CARCi,n−1 ∩Ai(
∏
j 6=i

Rj ∩ Cj ∩ CARCj,n−1),

for every n ∈ N. That is, CARCi brings together all the strategy-type pairs (si, ti) where

player i’s type ti assumes that every player j 6= i is rational, cautious, and assumes that

every player j 6= i assumes that every player k 6= j is rational, cautious, and so on. Based

on the above:29

Theorem 1 (Foundation of iterated admissibility). Let G be a game. For any player i the

following holds:

(i) For any complete ambiguous type structure, any player i and any strategy-type pair

(si, ti), if type ti is consistent with cautiousness and assumption of rationality and

29The theorem is stated and holds only for a complete type structure because the assumption operator
is not monotone. This is similar to, for example, assumption in Brandenburger, Friedenberg and Keisler
(2008) or strong belief of Battigalli and Siniscalchi (2002). An example showing why completeness is needed
is available upon request.
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cautiousness and si is rational for ti, then si is iteratively admissible; i.e.,

ProjSi(Ri ∩ Ci ∩ CARCi) ⊆W
∞
i .

(ii) For any player i and any strategy si, if si is iteratively admissible then there exist a

complete ambiguous type structure T and a type ti consistent with cautiousness and

assumption of rationality and cautiousness for which si is rational; i.e.,

W∞i ⊆ ProjSi(Ri ∩ Ci ∩ CARCi).

Thus, Theorem 1 provides a complete characterization of iterated admissibility. Part

(i) is a sufficiency result. It shows that whenever a player chooses in a robust way that

maximizes with respect to higher-order assumptions that represent common assumption

in rationality and cautiousness, then the resulting strategy is necessarily iteratively ad-

missible. Part (ii) is, partially, the necessity counterpart: while it is not true that every

time an iteratively admissible strategy is chosen this is due to the player being rational,

cautious, and best-replying to the higher-order assumption restrictions that represent com-

mon assumption in rationality and cautiousness, it is true that every iteratively admissible

strategy is a rational choice for a type that is consistent with common assumption in ra-

tionality and cautiousness. The proof of the theorem is provided by iteration and relies

on the slightly stronger result according to which, n rounds of elimination of weakly dom-

inated strategies characterize the behavioral implications of rationality, cautiousness and

n − 1 rounds of assumption in rationality and cautiousness.30 Notably, from a conceptual

perspective, the theorem reveals that whenever the elimination procedure involves more

than one round, satisfying the epistemic conditions above requires players’ preferences to

display ambiguity. As the next theorem shows, if the requirement of completeness of the

type structure is dropped then the behavioral consequences of rationality, cautiousness and

common assumption thereof are captured by self-admissibility:

Theorem 2 (Foundation of self-admissibility). Let G be a game. Then:

(i) For any ambiguous type structure T the set of strategies consistent with rational-

ity, cautiousness and common assumption of rationality and cautiousness is a self-

admissible set; i.e., the following set is self-admissible:∏
i∈I

ProjSi(Ri ∩ Ci ∩ CARCi).

30This statement is properly formalized in Theorem B1 in Section B. For expositional reasons, we opted
here to present the result corresponding to only the full iteration process, so that the result for iterated
admissibility and the result for self-admissibility (Theorem 2 below) can be compared straightforwardly.
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(ii) For any self-admissible set Q there exists a finite ambiguous type structure T for which

Q characterizes the behavioral implications of rationality, cautiousness and common

assumption of rationality and cautiousness; i.e., such that:∏
i∈I

ProjSi(Ri ∩ Ci ∩ CARCi) = Q.

The interpretation is analogous to that of Theorem 1. Part (i) states that given an

arbitrary ambiguous type structure, not necessarily complete, the set of strategy profiles

that are consistent with rationality, cautiousness and common assumption of rationality

and cautiousness is a self-admissible set. Part (ii) offers the partial converse: For any given

self-admissible set Q there exists an ambiguous type structure T , notably, finite, such that

Q is exactly the set of strategy profiles that are consistent with rationality, cautiousness and

common assumption of rationality and cautiousness within T . Theorems 1 and 2 are clearly

connected because the set of iteratively admissible strategy profiles is itself self-admissible.

In particular, for a fixed game this reveals that the set of iteratively admissible strategies

can be understood as strategies obtained not only in a very large complete type structure,

but also under a smaller finite one in which, as shown in the proof of Theorem 2, each player

i only has as many types as there are iteratively admissible strategies plus one additional

dummy type.31

5.2 Iterated assumption and ambiguity

The main distinctive feature of assumption with respect to the usual belief for Bayesian

agents, and as in the assumption operator of Brandenburger, Friedenberg and Keisler (2008),

is the failure of monotonicity.32 Whenever a Bayesian agent believes in event E, she also

believes in every event F such that E ⊆ F : The (Bayesian) belief µi that assigns probability

one to E assigns probability one to F . This is not the case with our notion of assumption.

Type ti might assume event E via some belief µi ∈ Mi(ti) that has full-support on E,

but she may fail to assume an event F such that E ⊆ F ;33 even if ti assumed such F , it

certainly, could not be via µi. Thus, when considering a sequence of nested events such

as the finite iterations in the common assumption events defined above, a single belief can

assign probability one to all the events in the sequence simultaneously, but different beliefs

are required in order to assume each of them at the same time. This is exactly why the

inclusion-exclusion problem arises within a standard Bayesian framework, but it can be

31The proof of Theorem 2 proceeds in a way very similar to the one by Brandenburger, Friedenberg and
Keisler (2008) of their characterization result for self-admissible sets (Theorem 8.1). In particular, we need
exactly the same number of types for each player.

32This is also reminiscent of strong belief as defined and studied by Battigalli and Siniscalchi (1999, 2002).
33We are implicitly assuming that the topological closure of F contains that of E.
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resolved within our framework.

In principle there is no reason to consider that the assumption of an event is an expression

of cautiousness; for every type there exists always an event that is assumed and this simply

relates to which specific states play some role in how preference ranks acts. However,

the assumption of different nested events is a non-trivial feature that reveals a cautious

attitude: Whenever a type assumes two nested events E and F , the preference represented

is crucially sensitive to comparisons at every state in E but also to comparisons at every

state in the larger event F , in particular to those outside E. Of course, as mentioned above,

the simultaneous assumption of different events necessarily requires belief multiplicity.

5.3 (Non-)Emptiness of common assumption of rationality and cautiousness

The canonical epistemic foundation of iterated admissibility in the literature is due to Bran-

denburger, Friedenberg and Keisler (2008). Their seminal result shows that m rounds of

elimination of non-admissible strategies characterize the behavioral implications of rational-

ity and mth-order mutual assumption of rationality for finite m in a model where players’

uncertainty is formalized by type structures where types are mapped to lexicographic prob-

ability systems. As shown by Blume, Brandenburger and Dekel (1991a), lexicographic

probability systems arise under a variation of Anscombe and Aumann’s (1963) preferences

in which the axiom of continuity is relaxed (rather than that of completeness, as in Bewley’s

(2002) variant). However, Brandenburger, Friedenberg and Keisler (2008) also reveal a vex-

atious feature of the common assumption case: Their celebrated impossibility result shows

that for every generic game, if the type structure is complete and maps types continuously,

then common assumption in rationality is empty. Below we also discuss the work by Keisler

and Lee (2015), Yang (2015), Lee (2016) and Catonini and De Vito (2018a), who propose

changes in the formalism that allow for sound epistemic foundations, and compare their

results to ours.

Notice first that within our set-up, and for every game G, common assumption in

rationality and cautiousness is never empty in complete ambiguous type structures. The

intuition behind the claim is easy to see: For each iteration in player i’s reasoning process

set a belief µni ∈ ∆(S−i×T−i) that has full-support on the topological closure of
∏
j 6=iRj ∩

CARCj,n (these collections of strategy-type pairs are clearly never empty; thus, the belief

µni always exists). Then, define Mi as the topological closure of the convex hull of {µni }n∈N,

and by virtue of the ambiguous type structure being complete, pick type ti with ambiguous

beliefs Mi.
34 By construction, ti is a type representing common assumption of rationality

and cautiousness and hence, CARCi is non-empty.

34As shown by Ahn (2007), this assignment can take place in an ambiguous type structure that maps
types to ambiguous beliefs continuously.
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Furthermore, as briefly mentioned in Section 1, the non-emptiness of rationality and

common assumption thereof does not follow from specific alterations in the formalism (be-

yond the different decision-theoretic model underlying the approach). This is easier to visu-

alize by direct comparison with other studies that also provide sound foundations for iterated

admissibility. Keisler and Lee (2015) obtain their result by dropping the requirement that

types are mapped continuously, Yang (2015) considers a weaker version of assumption than

that in Brandenburger, Friedenberg and Keisler (2008) and Lee (2016) explicitly imposes

coherence on the preferences, which is usually only checked for the beliefs that represent

the preferences. For lexicographic probability systems, which he builds on, this makes a

difference. As said, we do not require any of these modifications: Our type structures

map types continuously, our notion of assumption is a direct adaption of that in Branden-

burger, Friedenberg and Keisler (2008) and Dekel, Friedenberg and Siniscalchi (2016),35

and the coherence requirement implicit in our type structures resembles the standard one

in literature due to Brandenburger and Dekel (1993).36 Finally, Catonini and De Vito

(2018a) consider a weaker version of the likeliness-ordering of events that characterizes the

lexicographic probability system and an alternative version of cautiousness where only the

payoff-relevant aspect of the states of the world play any role. Again (and despite Theorems

1 and 2 would remain unchanged under this alternative notion of cautiousness), we obtain

our non-emptiness result with a standard, purely decision-theoretic notion of cautiousness

that does not require any specific structure of the set of states.

To end this section, we present a comparison between lexicographic probability systems

and ambiguous beliefs that provides some understanding of the differences between the

two approaches with respect to the presence of ambiguity. Remember that a lexicographic

probability system consists of a finite sequence beliefs {µk}nk=1 ⊆ ∆(Θ),37 where the order

of the sequence represents the epistemic priority attached to each element: µ1 is the decision

maker’s ‘primary’ hypothesis, µ2 is the ‘secondary’ hypothesis, and so on. This is reflected

by the lexicographic consideration, i.e. if act f is better than g for belief µ1, then the

comparison between the two acts for the rest of the beliefs in the sequence is immaterial and

the decision maker prefers f to g. The main distinction between lexicographic probability

systems and ambiguous beliefs is then clear: Both are composed of multiple beliefs, but the

former incorporates a hierarchy in terms of epistemic priority and hence removes any trace

of ambiguity. However, as we show above, this hierarchy is not important to overcome the

inclusion-exclusion problem; what is important is the multiplicity of beliefs.

35See also Footnote 28.
36The requirement is explicit in the construction by Ahn (2007).
37Brandenburger, Friedenberg and Keisler (2008) use lexicographic conditional probability systems, but

their result extends to more general lexicographic probability systems as shown by Dekel, Friedenberg and
Siniscalchi (2016).
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6 Conclusions

Cautiousness in games is intuitively understood as the idea that even when a player deems

some of her opponents’ strategies to be completely unlikely (typically on the basis of strate-

gic reasoning), she still prefers to choose strategies that are immune to deviations towards

such unexpected strategies. This is at odds with the strategically sophisticated expected

utility maximization process representing a standard Bayesian rational decision maker who

believes her opponent to be rational too: Every suboptimal strategy of the latter is as-

signed zero probability by the subjective belief of the former, and cannot therefore affect

the decision process.

This paper proposes a new theoretic understanding of cautiousness in interactive settings

that reconciles it with strategic sophistication. We interpret cautiousness under strategic

sophistication as a manifestation of robustness to ambiguity, which renders more choices as

non-optimal. Then we show that the resulting behavioral implications can be obtained as

a consequence of rationality and related higher-order assumption constraints. Specifically:

(i) We introduce the possibility of ambiguity in beliefs by allowing players’ preferences

to be incomplete. This is done by replacing the standard Anscombe and Aumann

(1963) decision-theoretic framework behind each player with a model of (possibly)

incomplete preferences à la Bewley (2002) so that each player’s uncertainty about

her opponents’ behavior is represented by a possibly non-singleton set of beliefs that

reflects the decision maker’s possibly ambiguous uncertainty. Our main result implies

that for choices that are iteratively admissible the justifying set of beliefs has to be

non-singleton for non-trivial games.

(ii) We apply the framework described above to study the epistemic (i.e. reasoning-based)

foundations of iterated admissibility in belief-complete type structures and find that

it characterizes the behavioral implications of rationality, cautiousness, and common

assumption thereof (Theorem 1). For non-complete type structures we find that it

is self-admissible sets that characterize the behavioral implications of such an event

(Theorem 2).

Thus, the main insight is immediately apparent: The inclusion-exclusion problem of

Samuelson (1992) can be resolved not only by relaxing continuity of preferences (i.e. through

lexicographic probability systems), but also by relaxing completeness (while maintaining

continuity). Notably, this enables us to provide a sound epistemic foundation of iterated

admissibility—a challenging task within the framework of lexicographic probability systems.

Using our approach, it is easy to see that the event of rationality, cautiousness, and common

assumption thereof is non-empty across all games—unlike, for instance, the foundations for
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iterated admissibility under lexicographic probability systems, as found by Brandenburger,

Friedenberg and Keisler (2008), and the instruments involved in our characterization (type

structures and assumption operators) are straightforward generalizations of those in the

realm of standard Bayesian preferences. In addition, the suggested link between ambiguity

via incomplete preferences and the presence of cautiousness is potentially testable by ap-

plying techniques for the identification of incompleteness of preferences recently developed

in the literature on experimental economics (see Cettolin and Riedl, 2019).

Finally, the formalism shows that even with incomplete preferences, an iterative solution

concept is valid and well-founded. To elaborate, note that the inclusion-extension problem

extends, well-beyond iterated admissibility, to every (non trivial) iterated deletion procedure

that incorporates cautiousness. This is apparent in Dekel and Fudenberg’s (1990) procedure

(the DF-procedure; persistency in Brandenburger, 2003, and Catonini and De Vito, 2018b),

which consists of one round of elimination of weakly dominated strategies followed by the

iterated elimination of strictly dominated strategies. Here, the notion of cautiousness be-

hind the first elimination round requires player i’s beliefs to assign positive probability to

every strategy by her opponents (i.e. to include all strategies of the opponents) whereas

the iterated elimination that follows requires player i’s beliefs to assign zero probability to

opponents’ strategies that did not survive the first round (i.e. to exclude some strategies).

Hence, the presence of inclusion-exclusion issues makes understanding the DF-procedure

problematic from the standard Bayesian perspective. Unsurprisingly, the tension can again

be solved via multiplicity of beliefs resulting from ambiguity. Say that player i believes

event E if at least one belief in her set of ambiguous beliefs assigns probability one to E.

It is easy to show then that the DF-procedure characterizes the behavioral implications of

rationality, cautiousness (as defined in Section 4.2.2) and common belief thereof.38 In ad-

dition, it is immediately possible to replicate, within this framework, the well-known result

that rationalizability (the iterated elimination of strictly dominated strategies) character-

izes rationality and common belief thereof. A comparison between these two observations

and Theorem 1 illustrates the theoretical connection between cautiousness and strategic

reasoning on the one hand, and ambiguity on the other: In the absence of cautiousness (i.e.

rationalizability) behavior can be explained without appealing to ambiguous beliefs, but

the latter becomes a sine qua non condition as soon as the solution concept relies on any

notion of cautiousness (i.e. iterated admissibility and the DF-procedure).

38In Ziegler and Zuazo-Garin (2019) we systematically study iterated deletion procedures under cautious-
ness, distinguishing different notions of cautiousness: Weak cautiousness (identifiable with the notion of
cautiousness here), and strong cautiousness, which helps understand the iterated elimination of never strict
best-replies.
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A Decision Theory

A.1 Decision problems and Bewley preferences

Given a decision environment (Z,Θ), a decision problem consists of a triplet (Z,Θ, F ) where

F is a subset of acts that we call feasible and represents the acts that are materially available

to the decision maker.39 Bewley preferences satisfy the following axioms:

A1. Preorder. % is reflexive and transitive.

A2. Monotonicity. For any pair of acts f, g,

f(θ) % g(θ) for any θ ∈ Θ =⇒ f % g.

A3. Continuity. For any three acts f, g, h the following two are closed in [0, 1]:

{λ ∈ [0, 1] |λf + (1− λ)g % h} and {λ ∈ [0, 1] |h % λf + (1− λ)g} .

A4. Nontriviality. There exist two acts f, g such that f % g and not g % f .

A5. Certainty-Completeness. For any two constant acts f, g either f % g or g % f .

A6. Independence. For any acts f, g, h and any α ∈ (0, 1),

f % g ⇐⇒ αf + (1− α)h % αg + (1− α)h.

Theorem 1 in Gilboa, Maccheroni, Marinacci and Schmeidler (2010) shows that these axioms

characterize the preferences to get the representation stated in the main text.

A.2 Games as decision problems

Players are envisioned as individual decision makers facing a decision problem where their

opponents’ strategies are part of the description of the states of the world and strategies are

the feasible acts. For obvious reasons, for each player i, game G is a very specific decision

problem (Zi,Θi, Fi) consisting of:

• Outcomes. In contexts of complete (payoff-relevant) information, player i’s utility

depends only on the strategy profiles chosen in the game; hence, we identify outcomes

with the latter: Zi := S.

39That is, the decision maker may have preference on elements of not only F , but F , which means that
she might have preferences on options that are not materially available in the problem under study.
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• States. Player i’s primary source of uncertainty (and the only payoff-relevant one)

is strategic: it refers to her opponents’ behavior (S−i). However, player i’s beliefs

about her opponents’ strategies could be affected by an additional non payoff-relevant

unobserved parameters about which she might face uncertainty, say T−i.
40 We identify

the set of states of the world with these joint sources of uncertainty: Θi := S−i×T−i.

• Acts and feasible acts. Player i’s set of acts is Fi := ∆(S)S−i×T−i . Notice that within

the context of a game this set of acts is not feasible. First, player i cannot make her

choice contingent on a parameter t−i that she does not observe. Second, in situations

of simultaneous choice, player i cannot make her choice contingent on her opponents’

choices. Still, player i might (and typically will) have preferences on modeled but

unavailable options. The set of player i’s feasible acts is then identified with her

mixed strategies:

Fi :=


f ∈ Fi

∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists a σi ∈ ∆(Si) such that:

f(s−i, t−i)[(s
′
−i; s

′
i)] =

 σi[s
′
i] if s′−i = s−i,

0 otherwise,

for any (s−i, t−i) ∈ S−i × T−i and any (s′−i; s
′
i) ∈ S


.

In addition, remember that game G already incorporates utility functions; thus, each

player i’s set of Bewley preferences under consideration needs to be restricted to those pref-

erences whose risk attitude is represented by utility function ui. Now, Theorem 1 by Gilboa,

Maccheroni, Marinacci and Schmeidler (2010) implies that for any set of parameters T−i,

each Bewley preference for decision environment (S, S−i×T−i) whose risk attitude is repre-

sented by ui is biunivocally associated with ambiguous beliefs Mi ⊆ ∆(S−i× T−i).41 Thus,

there is no loss of generality in switching the focus from Bewley preferences to ambiguous

beliefs, the collection of which we denote by Mi(S−i × T−i).

A.3 Decisiveness

We refer to the types that admit rational choices as decisive. The foundation of decisiveness

in terms of preferences is provided by Proposition 1 below. Decisive types are those induced

by preferences that are possibly incomplete but display completeness at the top: the decision

maker is indifferent between two acts that are not less preferred than another act.42

40 To ensure appropriate construction, T−i is assumed to be compact and metrizable.
41Remember that Mi is non-empty, closed, and convex. Of course, Mi is a subset of ∆(S−i) in cases in

which we omit set of parameters T−i.
42Despite the following characterization relying on an axiom evoking existence, G being a finite game

implies that the verification of the condition requires only finitely many bets.
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Proposition 1 (Behavioral foundation of decisiveness). Let G be a game and T , an am-

biguous type structure. Then, any player i’s type ti is decisive if and only if there ex-

ists a subset of feasible acts F ∗i ⊆ Fi, such that %i, the Bewley preference represented by

(ui,Mi(ti)), satisfies

f ∼i g �i h,

for every f, g ∈ F ∗i and every h ∈ Fi \ F ∗i .

Proof. Fix player i, type ti and event E−i ⊆ S−i × T−i and let %i denote the Bewley

preference represented by (ui,Mi(ti)). The ‘if’ part is immediate, so we focus on the ‘only

if’ part. To see it simply take S∗i :=
⋂
µi∈Mi(ti)

BRi(margS−iµi) and set:

F ∗i :=


fi ∈ Fi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists a σi ∈ ∆(Si) such that:

(i) fi(s−i, t−i)[(s
′
−i; s

′
i)] =

 σi[s
′
i] if s′−i = s−i,

0 otherwise,

for any (s−i, t−i) ∈ S−i × T−i and any (s′−i; s
′
i) ∈ S,

(ii) σi[S
∗
i ] = 1


.

Clearly, F ∗ ⊆ F and f ∼i g �i h for every f, g ∈ F ∗i and every h ∈ Fi \ F ∗i . �

Notice that in the presence of incomplete preferences ‘undomination’ (an act not be-

ing strictly worse than some other act) and ‘optimality’ (an act being at least as good as

every other act) are two different concepts, which is not the case under completeness: An

optimal act is always undominated but an undominated act might not be optimal; further-

more, every Bewley preference admits undominated acts, but there may not exist optimal

ones. Decisiveness ensures the existence of the latter, which in turn, restores the equiva-

lence of undomination and optimality. In consequence, imposing decisiveness on incomplete

preferences is similar in spirit to the requirement of Bayesian updating for conditional prob-

ability systems in the literature of extensive-form games.43 As for decisiveness, Bayesian

updating guarantees the existence of optimal strategies by forcing them to be equivalent to

undominated ones.

B Characterization result

As mentioned in the main text, we first prove the result for every finite iteration.

43The definition of conditional probability systems (originally due to Renyi, 1955) requires the decision
maker to update her beliefs according to the chain rule whenever possible; this requirement is usually referred
to as Bayesian updating.



28

Theorem B1. Let G be a game and T a complete ambiguous type structure. For any n ∈ N
and every player i the following holds:

ProjSi(Ri ∩ Ci ∩ CARCi,n) = Wn+1
i .

Proof. For the sake of convenience, for each player i we denote Xi,0 := Si × Ti and for any

n ∈ N, Xi,n := Ri ∩ Ci ∩ CARCi,n−1. Now, we proceed by induction on n:

Initial Step (n = 0). For the right-hand inclusion, set strategy-type pair (s̄i, t̄i) ∈ Ri∩Ci
and denote M̄i = Mi(t̄i). Then, since t̄i is cautious, we know that there exists a belief

µ1
i ∈ M̄i whose support is S−i × T−i, and since (s̄i, t̄i) ∈ Ri, we know that s̄i is a best-reply

for margS−iµ
1
i . Thus, µ̄1

i := margS−iµ
1
i is a conjecture in with full-support on S−i for which

s̄i is a best-reply. Hence, s̄i ∈W 1
i .

For the left-hand inclusion, set strategy s̄i ∈W 1
i and conjecture µ̄i with full-support on

S−i for which s̄i is a best-reply. Then, take arbitrary full-support belief ηi ∈ ∆(T−i) and set

µ1
i := µ̄i× ηi and M̄i := {µ1

i }. Since T is complete, we know that there exists a type t̄i ∈ Ti
such that Mi(t̄i) = M̄i. Since µ1

i has full-support on S−i × T−i we know that t̄i is cautious,

and hence, that (s̄i, t̄i) ∈ Ci, and as s̄i is a best-reply to the marginal on S−i induced by the

unique belief in Mi(t̄i) it follows that (s̄i, t̄i) ∈ Ri. Thus, it can be concluded that (s̄i, t̄i) is

a strategy-type pair in Ri ∩ Ci that induces s̄i.

Inductive Step. Suppose that n ≥ 0 is such that the claim holds. We next verify that it

also holds for n+ 1. For the right-hand inclusion, set strategy-type pair (s̄i, t̄i) ∈ Ri ∩Ci ∩
CARCi,n+1 and denote M̄i := Mi(t̄i). Then, since (s̄i, t̄i) ∈ Ri ∩ Ci ∩ CARCi,n it is known

from the induction hypothesis that s̄i ∈ Wn+1
i , and since (s̄i, t̄i) ∈ Ri ∩ CARCi,n+1 there

must exist a belief µn+1
i ∈ M̄i whose support is the closure of X−i,n+1 :=

∏
j 6=iXj,n+1 and

whose marginal on S−i admits s̄i as a best-reply. It follows from the induction hypothesis

and completeness that the support of µ̄n+1
i := margS−iµ

n+1
i is Wn+1

−i and hence, it can be

concluded that s̄i ∈Wn+2
i .

For the left-hand inclusion, set strategy s̄i ∈ Wn+2
i and family of conjectures {µ̄ki }

n+2
k=1

such that for each k = 1, . . . , n+ 2: (i) µ̄ki has full-support on W k−1
−i , and (ii) s̄i is a best-

reply to µ̄ki . Now, set arbitrary k = 0, . . . , n+ 1 and for any player j 6= i and any strategy

sj ∈W k
j define:

Yj,k(sj) := ProjTj ({sj} × Tj ∩Xj,k) ,

which is known from the induction hypothesis to be non-empty. It is also known from the

induction hypothesis that {Yj,k(sj)|sj ∈W k
j } is a finite cover of ProjTj (Xj,k). Now, for each

s−i ∈ W k
−i pick arbitrary belief ηki (s−i) ∈ ∆(

∏
j 6=i Yj,k(sj)) whose support is the closure of
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∏
j 6=i Yj,k(sj), and define belief µki in ∆(S−i × T−i) as follows:

µki [E] :=
∑

s−i∈Wk−1
−i

µ̄k+1
i [s−i] · ηki (s−i)

E ∩∏
j 6=i
{sj} × Yj,k(sj)

 .
Obviously, µki is well-defined and its support is exactly the closure of X−i,k :=

∏
j 6=iXj,k.

44

Notice in addition that since the marginal of µki on S−i is precisely µ̄k+1
i , we know that s̄i

is a best-reply to µki . Then, let M̄i be the convex hull of {µki }
n+1
k=0 and pick type t̄i ∈ Ti such

that Mi(t̄i) = M̄i. Clearly, the following two hold:

• (s̄i, t̄i) ∈ Ci ∩CARCi,k for any k = 0, . . . , n+ 1. To see this, simply note that for any

k = 0, . . . , n+ 1, it holds that µki ∈Mi(t̄i) = M̄i. Then, the claim is proven since (as

seen above) the support of µki is exactly the closure of X−i,k.

• (s̄i, t̄i) ∈ Ri. This follows immediately from—as seen above—s̄i being a best-reply

to the conjecture induced by each belief in {µki }
n+1
k=0 and thus, also to each belief in

Mi(t̄i).

Thus, it can be concluded that (s̄i, t̄i) is a strategy-type pair in Ri ∩ Ci ∩ CARCi,n+1 that

induces s̄i. �

Theorem 1 (Foundation of iterated admissibility). Let G be a game. For any player i the

following holds:

(i) For any complete ambiguous type structure, any player i and any strategy-type pair

(si, ti), if type ti is consistent with cautiousness and assumption of rationality and

cautiousness and si is rational for ti, then si is iteratively admissible; i.e.,

ProjSi(Ri ∩ Ci ∩ CARCi) ⊆W
∞
i .

(ii) For any player i and any strategy si, if si is iteratively admissible then there exist a

complete ambiguous type structure T and a type ti consistent with cautiousness and

assumption of rationality and cautiousness for which si is rational; i.e.,

W∞i ⊆ ProjSi(Ri ∩ Ci ∩ CARCi).

Proof. For the right-hand inclusion set strategy-type pair (s̄i, t̄i) ∈ Ri ∩ Ci ∩ CARCi and

simply notice that since (s̄i, t̄i) ∈ Ri ∩ Ci ∩ CARCi,n for any n ≥ 0, Theorem B1 reveals

that s̄i ∈Wn
i for any n ≥ 1. Thus, s̄i ∈W∞i .

44For the latter, simply note that for any (s−i, t−i), µ
k
i [N ] > 0 for any neighborhood N of (s−i, t−i) if and

only if ηki (s−i)[N ] > 0 for any neighborhood N of (s−i, t−i).
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For the left-hand inclusion, set strategy s̄i ∈ W∞i . Since, in particular, s̄i ∈ Wn+1
i for

any n ≥ 0, it is known from Theorem B1 that for any n ≥ 0 there exists a type tni ∈ Ti
such that (s̄i, t

n
i ) ∈ Ri ∩ Ci ∩ CARCi,n. Now, let M̄i denote the closure of the convex-hull

of
⋃
n≥0Mi(t

n
i ) and pick type t̄i ∈ Ti such that Mi(ti) = M̄i. Obviously, s̄i is a best-reply

is to every conjecture induced by the beliefs in Mi(t̄i) and t̄i is cautious and is consistent

with common assumption in rationality and cautiousness. Thus, (s̄i, t̄i) ∈ Ri ∩Ci ∩CARCi
and hence, s̄i ∈ ProjSi(Ri ∩ Ci ∩ CARCi). �

For the characterization of self-admissible sets, the first thing needed is the simple

observation that the reasoning process about strategies only stops after finitely many rounds.

Lemma B1. Let G be a game. Set an ambiguous type structure T . There exists a N ∈ N
such that for all n ≥ N ,∏

i∈I
ProjSi (Ri ∩ Ci ∩ CARCi,n) =

∏
i∈I

ProjSi (Ri ∩ Ci ∩ CARCi,N ) .

Proof. By definition CARCi,n+1 ⊆ CARCi,n, so that it also holds thatRi∩Ci∩CARCi,n+1 ⊆
Ri ∩ Ci ∩ CARCi,n. Since Si is finite there has to be an Ni ∈ N such that n ≥ Ni

ProjSi (Ri ∩ Ci ∩ CARCi,n) = ProjSi (Ri ∩ Ci ∩ CARCi,Ni) .

Take N = maxiNi. �

Theorem 2 (Foundation of self-admissibility). Let G be a game. Then:

(i) For any ambiguous type structure T the set of strategies consistent with rational-

ity, cautiousness and common assumption of rationality and cautiousness is a self-

admissible set; i.e., the following set is self-admissible:∏
i∈I

ProjSi(Ri ∩ Ci ∩ CARCi).

(ii) For any self-admissible set Q there exists a finite ambiguous type structure T for which

Q characterizes the behavioral implications of rationality, cautiousness and common

assumption of rationality and cautiousness; i.e., such that:∏
i∈I

ProjSi(Ri ∩ Ci ∩ CARCi) = Q.
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Proof. For the first part set an ambiguous type structure T and consider

Q :=
∏
i∈I

ProjSi (Ri ∩ Ci ∩ CARCi) .

If Q = ∅ then Q is a SAS. So assume it is non-empty. Set si ∈ ProjSi (Ri ∩ Ci ∩ CARCi);
then there exists a ti such that (si, ti) ∈ Ri ∩ Ci ∩ CARCi. Thus (si, ti) ∈ Ri ∩ Ci implies

that condition (i) of SAS is satisfied. Furthermore, with N from Lemma B1 and because

(si, ti) ∈ CARCi ⊆ CARCi,N+1 there must exist a µi ∈ Mi(ti) such that supp µi =∏
j 6=iRj ∩ Cj ∩ CARCj,N . Then, µ̄i := margS−iµi is a conjecture with full-support on Q−i

(again using Lemma B1) for which si is a best-reply. Hence, condition (ii) of SAS is satisfied.

Lastly, consider mixed strategy σi such that Ui(s−i;σi) = Ui(s−i; si) for every s−i. Then, by

Lemma D.2 of Brandenburger, Friedenberg and Keisler (2008) supp σi ⊆ BRi(margS−iµi)

for every µi ∈ Mi(ti) giving (ri, ti) ∈ Ri for all ri ∈ supp σi. Then it also holds that

(ri, ti) ∈ Ri ∩ Ci ∩ CARCi,n for every n ≥ 1, so that ri ∈ ProjSi (Ri ∩ Ci ∩ CARCi) and

thus, condition (iii) of SAS is satisfied too.

For the second part set SAS Q. By definition of SAS (and Pearce, 1984), for each si ∈ Qi,
there exist a µ1

i (si), µ
2
i (si) ∈ ∆(S−i) such that supp µ1

i (si) = S−i and supp µ2
i (si) = Q−i.

By Lemma D.4 of Brandenburger, Friedenberg and Keisler (2008) we choose µ1
i (si) so ri ∈

BRi(µ
1
i (si)) if and only if ri ∈ supp σi for a mixed strategy σi with Ui(s−i;σi) = Ui(s−i; si)

for every s−i.

Now, consider the set of types Ti := {ti(si)|si ∈ Qi} ∪ {?i}; to get an ambiguous

type structure define Mi(?i) ⊆ ∆(S−i × T−i) such that there is no ηi ∈ Mi(?i) with

supp ηi = S−i × T−i. For si ∈ Qi, define,

Yi(si) := {(ri, ti(si)) : either ri = si or

∃σi ∈ ∆(Si), such that ri ∈ supp σi and Ui(s−i;σi) = Ui(s−i; si) for all s−i ∈ S−i}

and then define two beliefs η1
i (si), η

2
i (si) ∈ ∆(S−i × T−i) such that

supp η1
i (si) = S−i × T−i and margS−iη

1
i (si) = µ1

i (si),

supp η2
i (si) =

∏
j 6=i
∪sj∈QjYj(sj) ∩Rj and margS−iη

2
i (si) = µ2

i (si).

To complete the description of the type structure, set Mi(ti(si)) to be the convex hull of

η1
i (si) and η2

i (si). Note that Ri only depends on the marginal beliefs on the strategies, so

for η2
i (si) to be well-defined the following is required:

Claim 1: ProjSi
⋃
si∈Qi Yi(si) ∩ Ri = Qi. If si ∈ Qi, then (si, ti(si)) ∈ Yi(si) and by

construction also (si, ti(si)) ∈ Ri. Conversely, set ri ∈ ProjSi
⋃
si∈Qi Yi(si) ∩ Ri. So there
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exists a si ∈ Qi such that (ri, ti(si)) ∈ Yi(si) ∩Ri. If ri = si, the proof is complete. If not,

then by property (iii) of self-admissible sets (and definition of Yi(si)), we it also follows

that ri ∈ Qi. F

Next we prove that the type structure satisfies that:

Q =
∏
i∈I

ProjSi (Ri ∩ Ci ∩ CARCi) .

Claim 2:
⋃
si∈Qi Yi(si) ∩ Ri = Ri ∩ Ci. Consider (ri, ti) ∈

⋃
si∈Qi Yi(si) ∩ Ri. Then for

some si ∈ Qi we have η1
i (si) and thus ti(si) is cautious. Conversely, for (ri, ti) ∈ Ri∩Ci it is

needed that ti 6= ?i since ?i is not cautious. Thus, there exists a si ∈ Qi such that ti = ti(si).

If si = ri, the proof is complete. If not, then Ri requires that ri ∈ BRi(µ1
i (si)), which holds

if and only if (see above) ri ∈ supp σi for a mixed strategy σi with Ui(s−i;σi) = Ui(s−i; si)

for every s−i. Thus, in either case it holds that (ri, ti(si)) ∈ Yi(si). F

Claim 3:
⋃
si∈Qi Yi(si) ∩ Ri = Ri ∩ Ci ∩ CARCi,1. (ri, ti) ∈ ∪si∈QiYi(si) ∩ Ri, that is

(ri, ti(si)) ∈ Yi(si) ∩ Ri for some si ∈ Qi. Then, (ri, ti(si)) ∈ CARCi,1 due to η2
i (si). The

converse follows from Claim 2. F

Induction concludes the proof. �
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