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Abstract

Information provision is a significant component of business-to-business in-

teraction. Furthermore, the provision of information is often conducted bilat-

erally. This precludes the possibility of commitment to a grand information

structure if there are multiple receivers. Consequently, in a strategic situation,

each receiver needs to reason about what information other receivers get. Since

the information provider does not know this reasoning process, a motivation

for a robustness requirement arises: the provider seeks an information struc-

ture that performs well no matter how the receivers actually reason. In this

paper, I provide a general method to study how to optimally provide infor-

mation under these constraints. The main result is a representation theorem,

which makes the problem tractable by reformulating it as a linear program in

belief space. Furthermore, I provide novel bounds on the dependence among

receivers’ beliefs, which provide even more tractability in some special cases.
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1 Introduction

Information provision and bilateral contracting are ubiquitous in today’s economy.

For example, contract research organizations (CROs) provide information to down-

stream firms (called sponsors), which are typically pharmaceutical or biotechnology

companies. Sponsors, such as pharmaceutical companies, engage with CROs to out-

source part of the drug development. If an agreement is reached, the contract specifies

which trials the CRO will conduct for the given sponsor, but not which trials are per-

formed for other sponsors. This is a typical example of bilateral contracting: the

contract is contingent only on events that can be verified by both of the involved

parties. Furthermore, it is common for sponsors of the same CRO to be direct com-

petitors.

Leaving aside details of specific industries, three considerations are crucial for

any information provision organization determining what information to provide to

clients. First, the provider effectively commits to deliver specific information to a

given client in a contract. For example, a contract will specify exactly which medical

tests will be conducted. Second, the bilateral nature of contracting excludes commit-

ment to a grand information structure shared with all clients. That is, a contract

will only state which tests will be conducted for a specific sponsor and will not state

which tests will be performed for other sponsors.1 Third, the receivers’ use of the

information is determined within an interactive setting. Therefore, a receiver faces

strategic uncertainty and needs to reason about what information other receivers get.

Crucially, the details of this reasoning process are usually unknown to the information

provider. For example, the decision for one sponsor to conduct further research on a

drug depends on whether the sponsor believes its competitors are also developing a

competing drug and, if so, what information the sponsor believes its competitors are

receiving.

1Contracts do not specify such details for several reasons. First, CROs have reputational concerns.
If CROs disclose which trials they were conducting for a sponsor’s competitor, the CRO might reveal
the competitor’s private information, undermining the CRO’s relationship with the competitor.
Second, a contract that is contingent on every trial conducted for every sponsor is complex and lacks
enforceability. These reasons are broadly applicable and do not only affect CROs. In particular,
the second point was raised by McAfee and Schwartz (1994) regarding any supplier that deals with
multiple downstream firms.
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In this paper, I provide a general, yet tractable, method for examining how an

information provider determines which information to supply bilaterally to multi-

ple receivers, taking into consideration each of the three aspects outlines above. In

particular, motivated by the severity of strategic uncertainty, I take an adversarial

approach which ensures robustness to details of receivers’ strategic reasoning and is

tractable. That is, the information provided to one receiver is required to be opti-

mal for the designer no matter how that receiver thinks about the information other

receivers may get. The adversarial approach adopted here ensures that the supplied

information is optimal even if nature “chooses” the receiver’s reasoning that is least

advantageous to the provider.

First, I formalize the issue of robustness to the receivers’ reasoning. From a

CRO’s point of view, I provide a precise answer to the following question: given

that a pharmaceutical sponsor gets some information about their drug, how does

the pharmaceutical sponsor decide whether to bring the drug to the market or, for

example, drop the project altogether? As noted above, sponsors face strategic un-

certainty because they do not know what information their competitors have access

to. This section’s primary contribution is to provide a solution concept that captures

this kind of uncertainty. The key insight is that the reasoning about the competitors’

information can be sidestepped: to form a best-reply the competitors’ information

is not relevant, but only the beliefs about the state of nature and the competitor’s

action matter. For this, a characterization of “rational” competitor’s action for any

information structure is needed: all belief-free rationalizable actions. Furthermore, I

demonstrate that this solution concept depends only upon players’ first-order beliefs

about the payoff state. For a CRO, this means that the solution concept depends

only on the information a sponsor receives about their own drug, but not on how a

sponsor thinks about the information its competitors have.

Second, I contribute to the foundations of information design with multiple re-

ceivers. Mathevet et al. (2020, p.2) describe information design as “an exercise in

belief manipulation;” therefore, it is crucial to characterize which beliefs can be in-

duced by a designer. If there is only one receiver, it is well known that there is only one

restriction on the distribution of beliefs about the state of nature. The average belief

under this distribution is equal to the prior—a requirement deemed Bayes plausibil-
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ity by Kamenica and Gentzkow (2011). This paper extends this characterization to

multiple receivers (cf. Theorem 1). Furthermore, I provide necessary bounds on the

dependence of beliefs if there are two receivers (cf. Proposition 2). These bounds are

reminiscent of, but usually tighter than, the Fréchet-Hoeffding bounds known from

copulas in probability theory and statistics.2 Moreover, these bounds are novel not

only for information-design and the economics literature more generally, but—to the

best of my knowledge—to probability theory as well and provide tractability because

they are related to the supermodular stochastic ordering. Even more tractability is

gained when more assumptions are put on the primitives, which in particular include

supermodular games. I illustrate this in a stylized version of the problem faced by a

CRO.

The remainder of the paper is organized as follows: the next subsections elaborate

on related literature and provide the setting for the stylized model of a CRO, which

will be used as a running example throughout the paper. Section 2 develops the

solution concept.3 The main representation theorem for the general design problem

is formalized in Section 3. Section 4 studies the case of oure persuasion, which includes

the derivation of the belief-dependence bounds and the solution to the CRO model.

In Section 5, I discuss some extensions and highlight issues related to interpretations

of the model. All proofs can be found in the Appendix.

1.1 Related Literature

This paper is related to several strands of the literature: a solution concept capturing a

notion of robustness, general information design, and adversarial and bilateral design.

In this section, I discuss these three strands in detail.

1.1.1 Robust Solution Concepts

Harsanyi’s (1968) theory of games with incomplete information is partially motivated

by the possibility that players’ information structures may not be common knowledge.

The solution concept I develop in this paper is directly inspired by the literature on

informational robustness which later formalized Harsanyi’s insights about robustness.

2A standard reference for copulas including the Fréchet-Hoeffding bounds is Nelsen (2006).
3A foundation of the solution concept is given in Subsection B.1.
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Early pioneers in this area include Aumann (1987), Brandenburger and Dekel (1987),

and Forges (1993, 2006). Bergemann and Morris (2013, 2016) recently exploited the

full power of informational robustness to provide robust predictions in economic en-

vironments with uncertainty.4 Within this subset of the literature, my work is closest

to that of Bergemann and Morris (2017). Their paper is concerned with robustness

over all information structures from the perspective of an outside observer, while this

paper instead focuses on the notion of robustness from a player’s perspective. This al-

lows sharper predictions because a player considers parts of the information structure

that an outside observer does not know. In this vein, a solution concept similar to

mine is used by Börgers and Li (2019) to define strategic simplicity. Like the solution

concept in this paper, Börgers and Li’s solution concept depends only on first-order

beliefs.5 However, these authors do not assume common belief in rationality and also

do not provide a foundation for their solution concept.

As discussed in Subsection 5.2, my solution concept can be given an epistemic

foundation by simply modifying the arguments introduced by Battigalli and Sinis-

calchi (2007) and developed further in Battigalli et al. (2011). In each of these papers

players have symmetric knowledge about the information structure. Either the full

information structure is commonly known, or no (common) knowledge about the in-

formation structure is assumed at all. In my case, there is no assumption about

common knowledge of the information structure, but each player knows her own

information structure.

1.1.2 Information Design

The literature on information design originated from contributions of Calzolari and

Pavan (2006), Bergemann and Pesendorfer (2007), Brocas and Carrillo (2007), and

Eső and Szentes (2007). Since then the literature has grown rapdily. The inter-

ested reader is referred to two recent reviews by Bergemann and Morris (2019) and

Kamenica (2019). I highlight papers here that are more closely related to this one,

4Other papers dealing with related ideas about robustness include Battigalli and Siniscalchi
(2003), Dekel et al. (2007), Liu (2015), Tang (2015), and Germano and Zuazo-Garin (2017).

5In robust mechanism design, Artemov et al. (2013) study robust mechanism design when the
designer knows that the first-order beliefs belong to a specific set of beliefs. In contrast to my
appraoch, the (sets of) first-order beliefs are common knowledge among the players in their setting.
A similar approach was considered by Ollár and Penta (2017).
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which provide general methods to analyze information design as this paper does. The

seminal paper pertaining to a single receiver is Kamenica and Gentzkow (2011) which

illustrates the usefulness of the concavification approach for information design. Re-

garding multiple receivers, Taneva (2019) uses a Myersonian approach, exploiting

a version of the revelation principle, which can be interpreted as a akin to partial

implementation known from mechanism design.

The closest work on information design is the upcoming article by Mathevet et al.

(2020). Like Taneva (2019), Mathevet et al. consider information design in cases

when the designer has the power to commit to the provision of a grand information

structure. However, for a given grand information structure, they allow for the case

of adversarial equilibrium selection. Thus, their approach is reminiscent of full imple-

mentation in mechanism design. They show that attaining robustness to equilibrium

selection requires constructing the full hierarchy of beliefs for each receiver.6 My ap-

proach is complementary to theirs. In my setting, strategic uncertainty arises from the

bilateral contracting environment which excludes commitment to a grand information

structure. Therefore, in my case the designer is not only concerned about equilibrium

selection, but also about strategic uncertainty. My proposed solution concept reflects

this more general robustness concern. In addition, I show that my robust solution

concept depends only on induced first-order beliefs. Therefore, it is not necessary to

induce a full hierarchy of beliefs, but it suffices to look at first-order beliefs only. Thus,

the approach I propose is closer in spirit to Kamenica and Gentzkow (2011): since

they consider a single receiver, by definition only first-order beliefs matter. However,

in the present paper there are multiple receivers and therefore a new characterization

in terms of distributions of first-order beliefs is needed. This is the main result of

Section 3.

Recent and independent work by Arieli, Babichenko, Sandomirskiy, and Tamuz

(2020) studies the question of which distributions over (first-order) beliefs can be

induced by information structures in the case of binary states of nature.7 They pro-

vide a full characterization of these distributions for two receivers and extend this

6Similar to the full implementation literature the revelation does not apply in Mathevet et al.’s
(2020) setting either.

7Arieli et al. also consider applications to social persuasion, i.e. persuading multiple receivers in
a non-strategic setting.
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characterization to multiple receivers in spirit of No Trade Theorems. In Section 4,

I provide bounds on the dependence structure across two receivers for these distri-

butions, which are necessary, but not sufficient. Under more stringent assumptions

(which include the CRO model of Subsection 1.2) my bounds become equivalent to

the conditions of Arieli et al. (2020) and are therefore also sufficient.

1.1.3 Adversarial and Bilateral Design

A few recent studies employ an adversarial approach to information design:8 Car-

roll (2016), Goldstein and Huang (2016), Inostroza and Pavan (2018), and Hoshino

(2019).9 All apply the adversarial selection for a solution concept that relies on a

grand information structure. In this paper the adversarial selection is more severe

because of the additional robustness coming from the bilateral contracting environ-

ment. Bilateral information design with or without adversarial robustness is, to the

best of my knowledge, new to this paper.

In a recent review, Carroll (2019) discusses adversarial selection aspects in mech-

anism design. Bilateral contracting has a long history in economics and has been

studied extensively in industrial organization.10 The relevant paper from this body

of literature is Dequiedt and Martimort (2015). Dequiedt and Martimort examine

bilateral mechanism design when the designer cannot commit to a grand mechanism.

My paper shares the motivation for analyzing a setting with limited commitment

with Dequiedt and Martimort. They overcome the limited commitment by imposing

appropriate ex-post incentive constraints on side of the principal. In equilibrium,

these ex-post constraints determine all beliefs of the agents including how they think

about other agents’ contracts. My approach resolves the limited-commitment issue

in a different way. In my model, the designer does not assume that all beliefs are in

equilibrium and therefore needs consider the reasoning of the receivers. By taking an

adversarial approach, the designer circumvents these issues and seeks an information

structure that is robust to the reasoning of the receivers.11

8That is, in addition to Mathevet et al. (2020) as mentioned above.
9I thank Nageeb Ali for making me aware of Hoshino’s paper.

10The interested reader is referred to two handbook chapters: Bresnahan and Levin (2012) and
Segal and Whinston (2012).

11In this sense, the literature on mechanism design without or with limited commitment is also
related.
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1.2 Leading Example: A Stylized CRO Model12

Consider a situation where a CRO conducts medical trials for two pharmaceutical

companies called Pfizr (P ) and Novarty (N).13 Both work on developing similar

breast cancer drugs. For simplicity, suppose that each drug could be either effective,

or ineffective, and one drug is effective if and only if the other drug is effective.

Thus, there are two states of nature, i.e. Θ = {0, 1} representing an ineffective drug

and an effective drug, respectively. Furthermore, there are two possible actions the

pharmaceutical companies can take: either conduct further research (R), or drop the

project (D). Profits (i.e. payoffs) are such that, if firms knew the effectiveness of the

drug, they would like to conduct research if and only if the drug is actually effective.

However, if a pharmaceutical company decides to conduct further research, its payoff

will be lower if the competitor also conducts further research. The reduction in payoffs

could be caused by lower expected profits in the future, because the competitor’s drug

is likely to be on the market. The following payoff tables represent such a situation.

0 2 0 0

1 1 2 0

0 −1 0 0

−2 −2 −1 0

Novarty
R D

Novarty
R D

Pfizr
R

D

θ = 1 (effective) θ = 0 (ineffective)

For any belief (about the state of nature) that puts probability greater than 2/3 on

the state in which the drug is effective (θ = 1),14 R is the dominant action. Similarly,

for any belief less than 1/3, the dominant action becomes D. For intermediate beliefs

about θ, the best action depends beliefs about competitors’ actions. Formal analysis

in this paper shows that these predictions are exactly those which are robust to the

reasoning about the information of the competitor. For example, if Pfizr assigns

probability close to one to θ = 1, then it does not matter what information Novarty

gets and Pfizr should conduct further research. However, if the probability of θ = 1 is

1/2, Novarty’s information matters. To see this, consider the Novarty medical trials,

12For readers familiar with information design, this section can be skipped. However, in the main
analysis I will refer back to this example to illustrate some of the results.

13These companies and names are purely fictional.
14Henceforth, I will always associate belief with the probability of the state being θ = 1.
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conducted by a CRO, that reveal with high probability that the drug is ineffective.

In such a case, Novarty will drop the project with high probability too. This implies

that Pfizr should conduct more research (given their belief about θ). On the other

hand, if the medical trials for Novarty are such that there is a high likelihood of

revealing that the drug is effective, then Novarty is likely conducting research and

Pfizr should drop the project (again given their belief about θ). Thus, Pfizrs beliefs

about Novartys information matter. Therefore, if robustness is a concern, the CRO

should take both actions, R and D, into account.

By providing information to the pharmaceutical companies, the CRO can effec-

tively influence the actions taken by the pharmaceutical companies. For example, a

natural assumption is that the CRO prefers further research rather than dropping the

project, because of the likelihood that further research will include subsequent trials

for the CRO to conduct. The goal of this paper is to provide a tractable method for

solving for the optimal provision of information in such settings. In the remainder of

this subsection, I highlight some specific information structures that are part of the

CRO’s choice set.

Suppose that both pharmaceutical companies have a prior belief that assigns prob-

ability 1/3 to the drugs being effective. A trivial choice of the CRO would be to provide

no information. In this case and similar to the explanation above, {R,D} is the ro-

bust prediction for both receivers. Thus, under adversarial selection, the CRO expects

both companies to drop the project, which would be the worst possible outcome from

the CRO’s perspective. Another possibility would be for the CRO to provide full in-

formation to each pharmaceutical company. In this case, each company will conduct

further research if and only if their drug is effective. Overall, there will be further

research (by both firms) with probability equal to the prior, i.e. slightly above 33%.

However, the CRO could increase the probability of further research by providing

information that does not fully reveal the effectiveness of the drugs.

For illustrative purposes, consider first a case where the CRO can actually commit

to a grand information structure and therefore does not have to worry about what

conjectures the receivers form about their competitor.15 This problem can be ana-

15With commitment to a grand information structure, Pfizr would exactly know what information
Novarty gets. That is, not the exact realization (i.e. the result of the trial), but the information
structure overall (i.e. which trials will be conducted).



9

lyzed with tools provided by Bergemann and Morris (2016) and Taneva (2019) and

the solution provides an upper bound for the CRO under the bilateral-contracting

assumptions of interest.16 Consider the following information structure, where both

companies get one of two possible reports: either the trial reveals that the drug is

ineffective (bad news, b) or the trial suggests the drug is effective but without fully

proving the drugs efficacy (good news, g). The reports are generated according to

the distribution shown in Table 1.17

Table 1: Optimal Information with Full Commitment.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr
b 0 0 0 1/2

g 0 1 1/2 0

For example, when getting the good news, Pfizr will update its belief to get a

posterior of 1/2, but since the designer committed to the grand information struc-

ture Pfizr knows even more: Novarty will get bad news with probability 1/3, which is

higher than the ex-ante probability of bad news, equal to 1/6. Furthermore, Pfizr also

knows how the state describing the effectiveness of the drugs correlates with the No-

varty reports. This reasoning about Novarty’s reports is crucial because under these

assumptions, a unique Bayes-Nash equilibrium exists,18 where the receivers conduct

further research if and only if they receive good news. Thus, with full commitment

to a grand information structure the designer can ensure that at least one company

will conduct further research with certainty, while both will conduct research with

probability equal to the prior belief of 1/3.

However, the CRO cannot actually commit to the grand information structure.

Due to the bilateral-contracting assumption, the CRO can only commit to the marginal

distributions and the receivers have to reason about the competitors’ information. For

16Applying the more robust method akin to full implementation of Mathevet et al. (2020) yields
the same result for this example.

17The information structure in Table 1 is optimal for a designer with symmetric, increasing,
and submodular preferences, i.e. v(R,D) = v(D,R), v(R, ·) ≥ v(D, ·), and v(R,R) + v(D,D) ≤
v(D,R) + v(R,D).

18The equilibrium action profile is also the unique interim-correlated rationalizable profile.
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example, if the CRO adopts the above information structure, Pfizr could nevertheless

conjecture that Novarty does not obtain any useful information from the CRO. For

the information structure based on this conjecture, a Bayes-Nash equilibrium exists

wherein Pfizr will drop the project given either report.19 Novarty could reason simi-

larly. If the CRO is concerned about adversarial selection, then the CRO’s worst-case

scenario results in both pharmaceutical companies dropping the project. The ques-

tion then becomes, is there a way to get these companies to conduct further research

given that only bilateral contracting is possible and the designer is concerned about

adversarial selection?20

Table 2: Optimal Information for Adversarial Bilateral design.

Report for Novarty

θ = 1 θ = 0

b g b g

Report for Pfizr
b 0 0 1/2 1/4

g 0 1 1/4 0

A positive answer is provided by the robust information structure described in

Table 2.21 This information structure reduces the overall probability of the good

report from 2/3 to 1/2. Now, after receiving the good report the posterior is 2/3,

which makes R a dominant action. Thus, each report now has a unique dominant

action22 and the conjecture about the competitor’s information no longer plays a role.

The optimal information structure exactly balances the trade-off between inducing

posteriors that are robust to receivers’ conjecture about the information of their

competitor and making further research as likely as possible. However, to achieve

this, the proposed robust information structure reduces the probability of at least

19In this conjectured equilibrium, Novarty would conduct research, but this does not matter for
the rest of the analysis.

20The arguments in this paragraph relate to a foundation I give in Subsection B.1 for the solution
concept developed in Section 2.

21As before, this information structure is optimal for the same preferences as stated in Footnote 17.
22With the exact posterior of 2/3 both actions are still undominated. Therefore, the induced

posterior should be 2/3 + ε for some small ε > 0. This example ignores this tie-breaking issue here.
The full theory presented below does account for this.
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one receiver conducting further research to 2/3.23 Therefore, the CRO suffers a loss

of about 33 percent that at least one company will conduct further research relative

to the optimal full commitment information structure. This is the loss due to the

constraints of bilateral contracting.

2 A Robust Solution Concept

This section develops a solution concept that delivers predictions that are robust in the

sense that they depend on what information the player receives about the economic

fundamental, but do not depend on how the player reasons about information other

players might receive. I refer to these predictions as individual robust predictions

and the corresponding solution concept is developed in two stages. The first stage

builds on the concept of belief-free rationalizability (see Battigalli et al., 2011).24 This

version of rationalizability is robust to any information any player might get. Thus,

this stage corresponds to robustness across information structure from an outside

observer. For the purposes of this paper, this solution concept is too extreme since

it does not take into account any information that a player gets about the state of

nature, which describes, for example, the effectiveness of a drug. The second stage

of the solution concept adds exactly this information, therefore refining belief-free

rationalizability. I argue that this new solution concept reflects the robust prediction

given that a player knows his/her information about the state of nature.

There are two players i ∈ N := {1, 2}, who will be also called receivers.25 Each

player has a finite set of actions Ai and as usual A = A1 × A2 denotes the set of

action profiles.26 Uncertainty is modeled via a finite set of states of nature denoted

by Θ. Each agent’s preferences are represented by a utility function ui : A×Θ→ R.

23Even with this robust information structure both receivers will conduct further research with
probability of 1/3.

24Battigalli (2003) and Battigalli and Siniscalchi (2003) introduce a more general class of versions
of rationalizability. One instance corresponds to belief-free rationalizability.

25This section is concerned only with the predictions of receivers’ actions for the given information
structure. The sender/designer does not play a role and will be introduced later.

26I follow the standard notation that for a fixed player i, A−i denotes the set of actions for the
other player 3− i. More generally, I use this notation for any player-specific sets.
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All these components form an economic environment E = 〈Θ, (Ai, ui)i∈N〉,27 which is

assumed to be common knowledge.

Example 1. The economic environment for the CRO example is succinctly described

by the two payoff tables specified in Subsection 1.2. �
The economic environment does not specify any information the players might

have. Most solution concepts need a specification of the information structure. How-

ever, Battigalli et al. (2011) provide a solution concept—belief-free rationalizabil-

ity—that depends only on the economic environment, capturing the exact behavioral

implications of (correct) common belief in rationality.28 This concept is defined in-

ductively as follows: for i ∈ N , let BFR0
i := Ai and for any k ∈ N inductively

define,29

BFRk
i :=

{
ai ∈ Ai : ∃µi ∈ ∆(Θ× A−i) s.t. (1)

(1) suppµi ⊆ Θ×BFRk−1
−i and (2) ai ∈ arg max

a′i∈Ai

∑
θ,a−i

µi(θ, a−i)ui(a
′
i, a−i, θ)

}
.

Then define BFRi := ∩k≥0BFR
k
i . According to the usual arguments (e.g. Wald,

1949; Pearce, 1984), this procedure is the same as deleting ex-post dominated actions

iteratively. An action ai ∈ Ai is ex-post dominated (relative to X−i ⊆ A−i), if there

exists αi ∈ ∆(Ai) such that

∑
a′i

α(a′i)ui(a
′
i, a−i, θ) > ui(ai, a−i, θ), for all (a−i, θ) ∈ X−i ×Θ.

Example 2. In the CRO example from Subsection 1.2 it is easy to see that no action

is ex-post dominated; hence BFRi = Ai. �
27This is different from a basic game which is widely used in information design (see e.g. Bergemann

and Morris, 2013; Mathevet et al., 2020). The difference is that a basic game also specifies a common
prior on the states of nature.

28Bergemann and Morris (2017) also mention this solution concept, but they call it ex post ra-
tionalizability. They also define a notion of belief-free rationalizability, which is stronger than the
version used here.

29As usual, for any set X, ∆(X) denotes the set of probability measures on X. If the underlying
set X is infinite, I will differ slightly from the standard notation by denoting the set of finite support
probability measures with ∆(X). For any µ ∈ ∆(X), suppµ denotes the support of µ.
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As mentioned at the beginning of this section, belief-free rationalizability only

takes the economic environment and rationality as primitive objects. In the current

situation, a player has some information about the state of nature which affects

his/her individual robust predictions.30 Thus, Player 1 is assumed have a prior π1 ∈
∆(Θ) and gets some information about the state of nature, which is described by a

marginal information structure.31

Definition 1. Fix an economic environment E. A marginal information structure

(for E) is I1 = 〈S1, ψ1〉, where (i) S1 is a finite set of signals and (ii) ψ1 : Θ→ ∆(S1)

is a conditional signal distribution.

This marginal information structure does not specify any possible signals for the

other player, nor does it it specify the signal distribution for the other player. Thus,

this marginal information structure provides information only about the state of

nature. The solution concept depends only on the marginal information structure.32

This solution concept will be a set of pure strategies denoted by R1(I1, π1) ⊆ AS1
1 and

is formally defined as follows.

Each signal realization s1 ∈ S1 induces a posterior belief33 µs1 ∈ ∆(Θ) by Bayesian

updating. Since these signals only induce a belief about the state of nature θ, these

beliefs are not rich enough to form a best-reply in an interactive setting. To form a

best-reply, beliefs about the actions of the other player are also needed. A rational-

extended belief incorporates this additional requirement by assigning positive proba-

bility only to the belief-free rationalizable actions of the other player.

Definition 2. Fix an economic environment E, a prior π1 ∈ ∆(Θ) and a marginal

information structure I1. A rational-extended belief for s1 ∈ S1 is a belief µ̃1 ∈
∆ (Θ× A2) such that (i) margΘ µ̃1 = µs1 as given by Bayesian updating and (ii)

supp µ̃1 ⊆ Θ×BFR2. Let M1 : S1 ⇒ ∆ (Θ× A2) denote the set of rational-extended

30The remainder of this section describes the perspective of Player 1. To apply it to Player 2,
switch the player indicies.

31The restriction to finite signals might not be without loss. However, an extension to countable
signal spaces is straightforward and whether this is without loss remains an open question. In this
section, I also assume that each signal realization s1 ∈ S1 has (ex-ante) positive probability. This
can be relaxed at the cost of more cumbersome notation. See Subsection B.1.

32Similar to before, the solution concept also depends on the economic environment, but this
dependence will be implicit.

33To save on notation, the player’s index is kept implicit by using the signals’ index.
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beliefs for each s1 ∈ S1, i.e.

M1(s1) = {µ̃ ∈ ∆ (Θ× A2) : µ̃ is a rational-extended belief for s1} .

Finally, these rational-extended beliefs allow me to define the individual robust

prediction.

Definition 3. Fix an economic environment E, a prior π1 ∈ ∆(Θ), and a marginal

information structure I1. A pure strategy b : S1 → A1 is conceivable for (π1, I1) if b

is optimal for at least one selection ofM1, i.e. b is optimal given µ1, i.e. for each s1 ∈
S1, there exists µ̃1 ∈Mi(s1) such that b(s1) ∈ arg maxa′1∈A1

∑
θ,a2

µ̃1(θ, a2)u1(a′1, a2, θ).

The individual robust prediction is the set of all conceivable strategies and is denoted

by R1(I1, π1).

A foundation in terms of explicit epistemic assumptions is discussed Subsec-

tion 5.2: the individual robust prediction corresponds to the behavioral implications

of common knowledge of the economic environment, common belief in rationality,

and knowledge of the marginal information structure. Thus, the prediction does not

rely on implicit or explicit common knowledge assumptions about the marginal in-

formation structure. This is relevant for later questions about information design.

The nature of bilateral contracting allows the designer to only commit to a marginal

information structure. The receiver understands this marginal information, but needs

to reason about what actions their opponent chooses. This reasoning process is not

transparent to the designer. Thus, all actions the designer can rule out are exactly

those strategies that are not part of the individual robust prediction. This is the

essence of Definition 3.34 Independently of the foundations, the robust predictions

are often simple to calculate as the following example shows.

Example 3. Table 3 shows the marginal information for Pfizr induced by the full

commitment optimal information structure described in Table 1. The bad report

34In Subsection B.1, I provide another foundation of this solution concept in terms of informational
robustness and Bayes-Nash equilibirum analyis similar in spirit to Bergemann and Morris (2013,
2016, 2017). This foundation relies on a theory of how player’s resolve uncertainty about the grand
information structure: each player conjectures a grand information structure consistent with their
marginal information structure. Given this conjecture, each player chooses a strategy as predicted
by a Bayes-Nash equilibrium. The individual robust predictions correspond to the union across all
such conjectures and all corresponding equilibria.
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Table 3: Pfizr’s marginal information derived from the information structure of Ta-
ble 1.

θ = 1 θ = 0

Report for Pfizer
b 0 1/2

g 1 1/2

leads to a posterior35 of zero, whereas the good report induces a posterior belief of

1/2. Example 2 established that all actions are belief-free rationalizable. Thus, the

sets of rational-extended beliefs for each signal are given by:

MP (b) = {µ̃ ∈ ∆(Θ× AN) : µ̃(1, R) + µ̃(1, D) = 0} , and

MP (g) = {µ̃ ∈ ∆(Θ× AN) : µ̃(1, R) + µ̃(1, D) = 1/2} .

Since Research (R) is a dominated action if the drug is ineffective, R cannot be part of

the individual robust prediction for the bad report. However, for the good report both

actions are conceivable. For example, D is a best-reply to µ(1, R) = 1−µ(0, R) = 1/2,

whereas R is a best-reply µ(1, D) = 1−µ(0, D) = 1/2. Both beliefs are valid rational-

extended belief for the good signal. Thus, the individual robust prediction for Pfizr is

RP (Table 3, 1/3) = {(D,D), (D,R)} , where the first coordinate indicates the action

after the bad report, and the second coordinate corresponds to the good report. �
Thus far the solution concept has been stated from an ex-ante perspective, which

is relevant for later questions about information design question. However, it will also

be useful to have the solution concept in an interim form. This is done by defining a

correspondence R1(·|I1, π1) : S1 ⇒ A1 as

R1(s1|I1, π1) := {a1 ∈ A1 : ∃b ∈ R1(I1, π1) s.t. a1 = b(s1)} .

The interim individual robust prediction relies only on the belief about the state of

nature that is induced by the signal. Thus, the solution concept does not depend

on the (marginal) information structure it is defined for, but only on the posteri-

ors it generates. Moreover, the robust predictions can be strategically distinguished

35Recall that within this example beliefs correspond to the likelihood of the state of the drug being
effective (θ = 1).
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by changing the economic environment. The following proposition formalizes these

simple observations, which will be useful to address the information-design question.

Proposition 1. Fix a set of states of nature Θ. Consider an economic environment

E (with states of nature given by Θ), two priors π1, π
′
1 ∈ ∆(Θ) and two marginal

information structures I1 = 〈S1, ψ1〉 and I ′1 = 〈S ′1, ψ′1〉. For all (s1, s
′
1) ∈ S1 × S ′1, if

µs1 = µs′1, then R1(s1|I1, π1) = R1(s′1|I ′1, π′1).

Conversely, consider two priors π1, π
′
1 ∈ ∆(Θ) and two marginal information

structures I1 = 〈S1, ψ1〉 and I ′1 = 〈S ′1, ψ′1〉. If there exists (s1, s
′
1) ∈ S1×S ′1 and θ ∈ Θ

such that µs1(θ) 6= µs′1(θ) then there exists a (finite) economic environment (holding

Θ fixed) such that R1(s1|I1, π1) ∩R1(s′1|I ′1, π′1) = ∅.

With Proposition 1 in mind,36 I abuse notation for the interim version of the

solution concept and write it as a correspondence defined on belief space, i.e. R1 :

∆(Θ) ⇒ A1. Thus, R1 denotes the ex-ante version, whereas R1(µ1) denotes the

interim version. The interim notion is illustrated by applying it to the CRO example.

Example 4. Due to the binary state space, the interim individual robust predictions

(defined on belief space) can be illustrated by means of a simple diagram. Figure 1

shows these predictions for both companies, where, a belief corresponds to the prob-

ability of the drug being effective. It was already argued in the introduction, that

for beliefs greater than 2/3 R is uniquely undominated, whereas for beliefs lower than

1/3 D is the only dominant action. For all intermediate beliefs, a similar argument

as in the previous example can establish that both actions are the individual robust

prediction. �

3 Adversarial Bilateral Information Design

The previous section prepared the stage to address the question of information de-

sign with bilateral contracting. Due to the nature of bilateral contracting, receivers’

behavior is not uniquely predicted and the information designer is concerned about

36As stated the proposition requires that every signal happens with positive probability. If any
signals have zero ex-ante probability, then the proposition needs to be adjusted to condition on
positive probability signals only.
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Figure 1: Individual robust predictions of the CRO game.

robustness to this uncertainty. For this, the previous section introduced a solution

concept that captures robust predictions of receivers’ actions. Crucially, this solution

concept depends only on the receiver’s belief about the states of nature. This feature

produces a general representation theorem for information design with an adversarial

and bilateral aspect.

To formally address the design question, the economic environment E needs to be

appended with the preferences of the designer (she) v : A×Θ→ R, which describes

the utility she gets if the receivers take actions a = (a1, a2). Furthermore, I assume

that she knows the receivers’ priors, and that these priors are the same as her prior,

i.e. π1 = π2 = π ∈ ∆(Θ).37 Given this assumption, it is without loss to assume that

the prior has full support. Together these components form a design environment

D = 〈E , π, v〉. In such an environment, the designer chooses (grand) information

structures, which specifies signals and distributions over signals for both receivers:

37The assumption says the designer knows the prior of the receivers, which happens to be the
same prior. It does not state that players know the prior of their opponent, i.e. there is no common
prior. Relaxing the assumption of the designer knowing the receivers’ priors is active research
even for the single receiver case. See, for example, Beauchêne et al. (2019), Kosterina (2020),
and Pahlke (2020). Heterogeneous priors with the same support can be incorporated along the
lines of Alonso and Câmara (2016). If priors with different supports are allowed, an extension
is not straightforward. Galperti (2019) addresses some of the subsequent issues in the case of a
single receiver. Applying Galperti’s approach to the multiple receivers setting of this paper seems
interesting for future research.
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Definition 4. Fix an economic environment E. A (grand) information structure (for

E) is I = 〈(S1, S2),Ψ〉, where for each player i ∈ N , (i) Si is a finite set of signals

and (ii) Ψi : Θ → ∆(S1 × S2) is a conditional signal distribution. Let I denote the

set of information structures (for E).

As before, I assume that each signal happens with positive probability.38 Addi-

tionally, a given information structure I induces a marginal information structure,

denoted by margi I (or sometimes just Ii—no confusion should arise), by marginal-

ization. That is, ψi(·|θ) = margSi
Ψ(·|θ), for all θ ∈ Θ, which justifies the naming.

The timeline of the overall design game is as follows:

Step 1: Designer chooses an information structure I ∈ I.

Step 2: Receivers learn their respective marginal information structure Ii.

Step 3: The state of nature θ realizes and signals (s1, s2) are sent according to Ψ(·|θ).

Step 4: For each signal (s1, s2), Nature recommends a conceivable action for each

receiver to minimize the payoff of the designer.

Step 5: Each receiver plays as recommended by Nature.

Step 6: Payoffs are realized.

The bilateral contracting assumption is reflected in Step 2: a contract only spec-

ifies the marginal information structure for each player. Step 4 corresponds to the

adversarial selection of the receivers’ actions. Due to bilateral contracts, there might

be multiple conceivable actions for each receiver, giving rise to uncertainty as to

which actions will be played. Here, the designer is assumed to be very sensitive to

this uncertainty and she considers a worst-case scenario.

3.1 The General Problem and its Representation

With this timing in mind, the information-design problem can be stated formally as

supI∈I V (I), where

V (I) :=
∑

θ∈Θ,s∈S

π(θ)ψ(s|θ) min
(ai∈Ri(si|Ii,π))i∈N

v(a1, a2, θ), (2)

38This is without loss in this section.
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and recall that Ii is the marginal information structure derived from I.39 If a max-

imizer exists,40 then the resulting information structure captures robustness in the

following sense: the optimal information structure performs well no matter how Na-

ture chooses and coordinates the receivers’ conceivable actions.

Given the structure of the problem, a natural approach would be to try to use a

version of the revelation principle. However, the standard revelation principle argu-

ment á la Myerson (1982) does not apply here: this approach requires tie-breaking

in favor of the designer. Instead, adversarial selection, by definition, selects actions

that are incentive-compatible for the agents and bad for the principal. The following

example illustrates that such an approach is bound to fail and shows that the problem

is even more subtle than the tie-breaking issue.41

Example 5. Let Θ = {0, 1} and consider an economic environment, where player 2

has two actions (x and y) and is indifferent between them. Thus, R2(µ2) = {x, y} =

A2 for any µ2 ∈ ∆(Θ). Player 1 has three actions a, b, c and payoffs are given by

Table 4.

Table 4: Payoffs for Player 1.

Player 2’s action

θ = 1 θ = 0

x y x y

Player 1’s action
a 2 0 0 2
b 3 0 1 0
c 0 1 0 3

First, b is conceivable for any belief: b is a best-reply if Player 1 is certain that

player 2 chooses x. Similarly, c is also always conceivable. For beliefs close to certainty

of either state, a is dominated by a mixture of b and c (e.g. in state θ = 1 almost all

the weight of the mixture will be on b). However, beliefs around 1/2 about θ makes

a conceivable. For example, suppose the belief about θ is exactly 1/2, then consider

39See the discussion after Definition 1.
40In general, a maximizer might not exist. The adversarial approach includes tie-breaking against

the designer’s favor. This can lead to a failure of upper semicontinuity of the objective function.
41I am indebted to Marciano Siniscalchi for providing this simple, yet elucidative, example. Inos-

troza and Pavan (2018, Example 1) illustrate a similar issue when the designer has full commitment.
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the following rational-extended belief: µ̃(1, x) = µ̃(0, y) = 1/2. For this belief, a is a

best-reply. It can be verified that for any belief µ ∈ ∆(Θ) such that µ ∈ [1/4, 3/4] a is

conceivable.

Now, consider a designer who only cares about Player 1’s action. In particular,

assume her (state-independent) preferences are given by a ≺ b ≺ c. Figure 2 shows

the robust predictions for Player 1 in belief space and the implied worst-case selection

for the designer.

µ1 10 3/41/4

{b, c}

b

{b, c}

b

A1

a

Figure 2: Robust Predictions for Player 1 and implied designer’s worst-case choice.

For any prior π ∈ ∆(Θ) the designer can get her (constrained) best outcome (b) by

fully revealing the state. This optimal payoff cannot be attained with recommendation

in general. For example, consider a prior belief of π = 1/2. A recommendation would

send b with certainty. However, this signal does not provide information beyond the

prior and therefore the worst-case prediction will be a rather than b as recommended.

The crucial failure is that a revelation principle with some sort of recommenda-

tions usually works by pooling signals together. This gives rise to a posterior that is

a convex combination of the posteriors derived from each of the pooled signals. How-

ever, it is not true that a best-reply to the convex combination is also a best-reply to

one of the original posteriors. For example, here, a is a best-reply to a convex com-

bination of beliefs that are certain about a state. For each of these extreme beliefs, a

is dominated by either b or c. �
Example 5 illustrates that there is no obvious simplification in signal space avail-

able that does not use some specific structure of the underlying economic environment.

Since the individual robust prediction Ri depends only on the belief induced by the

signal (see Proposition 1), the problem can be simplified by working with beliefs

directly similarly to the single-receiver case of Kamenica and Gentzkow (2011). How-

ever, for multiple receivers, their approach does not readily extend itself because the



21

designer has to address the full hierarchy of beliefs. This approach has been studied

by Mathevet et al. (2020).

In the present paper the information designer can only commit to the marginal

information structures because of the bilateral contracting assumption. In this set-

ting, the players know what information they will receiver about the state of nature,

but they do not know what information their opponent receives. The individual ro-

bust prediction corresponds to such an environment. Thus, the current setting raises

a question about which distribution over beliefs can be induced by an information

structure.42

Bayesian updating gives rise to receiver i’s posterior belief about the state of nature

µsi ∈ ∆(Θ).43 Furthermore, the information structure gives rise to a distribution over

beliefs and the state of nature, i.e. an element of ∆(∆(Θ) × ∆(Θ) × Θ). Formally,

this distribution τ is given by

λ(µ1, µ2, θ) =
∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ). (3)

Say a distribution over beliefs τ is induced by some information structure, if there

exists an information structure such that τ can be derived from the information

structure by Bayesian updating and Equation 3. Using Proposition 1, the objective

from Equation 2 can be rewritten as follows:

V (I) =
∑

θ∈Θ,s∈S

π(θ)ψ(s|θ) min
(ai∈Ri(µsi ))i∈N

v(a1, a2, θ)

=
∑
µ1,µ2,θ

λ(µ1, µ2, θ) min
(ai∈Ri(µi))i∈N

v(a1, a2, θ),

where λ corresponds to the distribution over beliefs induced by I. Now, the objective

is stated purely in terms of beliefs and the actual information structure no longer plays

a role. However, a simplification of the design problem calls for a characterization of

42Indeed, this is an open question in the literature. Ely (2017, p. 47) raises this concern quite
directly by stating that “[...] there is no useful generalization for the multi-agent case”.

43Mechanically, Bayesian updating gives rise to a belief about the other receiver’s signals as well.
However, as mentioned above only beliefs about the states matter.
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a subset of ∆(∆(Θ)×∆(Θ)× Θ) so that every element of this subset is induced by

some information structure.

Obviously, consistency with the prior π requires the marginal of λ on the state

space to coincide with π, i.e. margΘ λ = π. Furthermore, it is well known that

another requirement that needs to be satisfied for any distribution over beliefs is that

the belief of each player averages out to the prior, i.e. for each i ∈ N

∑
µ1,µ2,θ

µiλ(µ1, µ2, θ) = π. (4)

Kamenica and Gentzkow (2011) show that this condition is also sufficient to character-

ize the marginal distribution over beliefs for each player. However, these martingale

properties on the marginals are not enough to characterize the possible joint distri-

butions. Intuitively, what is missing are constraints linking together co-movement of

beliefs across players.

Table 5: λ not induced by any information structure.

µ2

λ
θ = 1 θ = 0

0 1 0 1

µ1
0 0 0 0 1/2

1 1/2 0 0 0

Example 6. Let Θ = {0, 1} and consider a uniform prior. Table 5 states a candidate

distribution λ, which satisfies consistency with the prior and satisfies the martingale

property for each player. However, no information structure induces such a distri-

bution over beliefs. Intuitively, why no information structure can give rise to such a

posterior distribution is easily seen: the extreme posteriors reflect the idea that the

information structure fully reveals the state to the receivers. But if this is the case,

there is no way to reveal one state to Player 1 and, at the same time, reveal the other

state to Player 2. �
The following representation theorem takes care of the restrictions across players

and follows from a direct-revelation argument in belief space:
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Theorem 1 (Representation Theorem). Fix a design environment D and define

ν(µ1, µ2, θ) := min(ai∈Ri(µi))i∈N
v(a1, a2, θ). The designer’s problem can be represented

as

sup
I∈I

V (I) = sup
λ∈∆(∆(Θ)2×θ)

∑
µ1,µ2,θ

λ(µ1, µ2, θ)ν(µ1, µ2, θ)

s.t. (1) marg
Θ

λ = π,

(2)

∑
µ−i

λ(µi, µ−i, ·)∑
µ−i,θ

λ(µi, µ−i, θ)
= µi, for every µi ∈ suppλ.

Furthermore, this restated problem is is a linear program.

Example 6 (continuing from p. 22). The proposed distribution of Table 5 does not

satisfy condition (2) of the program states in Theorem 1. To see this, consider the

case where Player 2 is certain of θ = 0 (i.e. µ2 = 0), so that∑
µ1
λ(µ1, 0, 0)∑

µ1,θ
λ(µ1, 0, θ)

= 0 6= µ2(0) = 1− µ2 = 1.

This formally illustrates that λ is not induced by any information structure as was

intuitively explained before. �
The characterization of the distributions over belief in the representation theo-

rem does not make use of the martingale properties (Equation 4). Indeed, the two

conditions in the theorem imply the martingale condition, because

∑
µi,µ−i,θ

τ(µi, µ−i, θ)µi =
∑
µi

µi
∑
µ−i,θ

τ(µi, µ−i, θ)
(2)
=
∑
µi

∑
µ−i

τ(µi, µ−i, ·)
(1)
= π. (5)

Furthermore, this characterization is a direct extension of the single-receiver charac-

terization of Kamenica and Gentzkow (2011), i.e. if one receiver does not get any

information the martingale condition (Equation 4) remains the only constraint for

the other receiver.44

44Henceforth, for a given set X and any x ∈ X, δx ∈ ∆(X) denotes the Dirac measure concentrated
at x.
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Corollary 1 (Kamenica and Gentzkow, 2011). Fix an economic environment E and

a full-support prior π ∈ ∆(Θ). Consider λ ∈ ∆(∆(Θ) × ∆(Θ) × Θ) with marginals

(on ∆(Θ)) τ1 and τ2 and suppose that (i) τ2 = δπ and (ii) margΘ λ = π. Then, λ is

induced by an information structure if and only if
∑

µ1
τ1(µ1)µ1 = π.

4 The Case of Pure Persuasion

So far the general problem allowed for the designer having intrinsic preference on

how the information is provided to the receivers. This section will address the case

where the designer only cares about the receivers’ actions, but does not care about

the state of nature herself. Henceforth, with a slight abuse of notation, the designer’s

preferences are given by v : A → R. Thus the objective of the designer becomes

to maximize
∑

θ∈Θ,s∈S π(θ)ψ(s|θ) min(ai∈Ri(si|Ii,π))i∈N
v(a1, a2). In this case the belief-

space approach simplifies the problem even further, because now the distribution

over two beliefs of the receivers are a sufficient to calculate the expected value for the

designer.

For a given a information structure I and the induced distribution over beliefs

and states λ ∈ ∆(∆(Θ)×∆(Θ)×Θ), consider the marginal distribution over beliefs

alone, i.e. marg1,2 λ =: τ ∈ ∆(∆(Θ)×∆(Θ)). Similar to above this allows to exploit

Proposition 1 to rewrite the objective in belief space as
∑

µ1,µ2
τ(µ1, µ2)ν(µ1, µ2),

where ν(µ1, µ2) := min(ai∈Ri(µi))i∈I
v(a1, a2). However, working in belief space requires

again a characterization of the choice set of the designer; that is a characterization

of distributions over receivers’ beliefs that can be induced by information structures.

However, this is an open problem in the literature. Very recently and independently

from my work, Arieli et al. (2020) provide such a characterization for the case of binary

states. Their characterization requires a quantification over all subsets of the support

of the distributions over beliefs and therefore does not readily yield a simplification

of the design problem. Instead, I follow a different route by providing bounds on

how dependent the beliefs can be across the two receivers. Although, these bounds

turn out to be only a necessary condition for distributions over beliefs to be induced

by any information structure, they are tractable and work for any (finite) number of
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states of nature.45 Furthermore, these bounds are sufficient under more assumptions

about the design environment. One set of such assumptions will be presented later.

4.1 Measuring Dependence of Random Variables

A bit more notation is needed to introduce the relevant measure of dependence for

random variables that is also relevant when realizations are beliefs. Let X and Y

be real-valued random variables.46 distributed according to cumulative distribution

functions (CDFs) FX and FY , respectively. Then the Fréchet class F(FX , FY ) is the

set of all joint CDFs with marginals given by FX and FY .

Definition 547 (Joe, 1997, Section 2.2.1). Fix two univariate CDFs F1 and F2. Con-

sider F, F ′ ∈ F(F1, F2). F ′ is said to be more concordant than F (denoted by F - F ′)

if F (x, y) ≤ F ′(x, y), for all (x, y) ∈ R2,

Intuitively, this stochastic ordering formalizes the idea that large values happen

more often together (across both dimensions) under F ′ than under F . Furthermore,

the Fréchet class F can be bounded according to this stochastic ordering. That is,

for given univariate CDFs F1 and F2, for every F ∈ F(F1, F1), F - F - F , where

F (x, y) := max{0, F1(x) + F2(y)− 1}, and (6)

F (x, y) := min{F1(x), F2(y)}. (7)

These bounds are often called Fréchet-Hoeffding bounds48 and they correspond to ex-

tremal dependence across the two dimensions. The lower bound corresponds to coun-

termonotonic random variables (i.e. low realizations in one dimension happen only

with high realizations in the other dimension), whereas the upper bound describes

comonotonic random variables (i.e. perfect positive dependence). These bounds also

describe the extremal dependence for information structures.49

45Arieli et al. (2020, Appendix B) discuss why my bounds are only necessary. An earlier version
of this paper erroneously claimed that these bounds are sufficient in general as well. I thank Omer
Tamuz for pointing this out to me.

46The definition readily extends to random variables taking values in a totally ordered set.
47This stochastic order is also known as the positive quadrant dependent (PQD) ordering. See,

e.g., Shaked and Shanthikumar (2007, Chapter 9).
48They play an important role in Copula theory. For more see, for example, Nelsen (2006).
49For this, the set of individual signals needs be endowed with any total order. Recall that infor-

mation structures are distributions over signals conditional on the state of nature, see Definition 4.
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For distributions over beliefs more restrictive bounds can be established. In gen-

eral, the Fréchet-Hoeffding bounds are too wide for distributions over beliefs. ??

shows a belief distribution that attains the lower Fréchet-Hoeffding bounds. However,

this belief distributions cannot be induced by an information structure, meaning that

the usual Fréchet-Hoeffding bounds can be tightened to bound the distributions of

beliefs induced by any information structure.50

Thus, the usual Fréchet-Hoeffding bounds can be tightened to provide necessary

conditions for distributions over beliefs induced by information structures. In this

section, I introduce and discuss such bounds that are useful for the information design

question at hand. Since these bounds concern CDFs defined on beliefs, the space of

beliefs needs to be ordered. Although the proposed bounds hold for any total order, it

is convenient to take a linear extension of the first-order stochastic dominance order.

To do this, endow the state of nature Θ with a total order, i.e. Θ = {θ1, . . . , θK}
for some finite K < ∞ and the order corresponds to the indexing set. Then endow

∆(Θ) with a completion of first-order stochastic dominance giving rise to a lattice

structure. Given µ, µ′ ∈ ∆(Θ), a sufficient condition for µ ≥ µ′ is µ first-order

stochastic dominating µ′, i.e. for every L = 1, . . . , K,
∑L

k=1 µ(θk) ≤
∑L

k=1 µ
′(θk).

Given this order, define CDFs over beliefs analogously to the case of CDFs of

real-valued random variables. That is, for a given distribution τ ∈ ∆(∆(Θ)), define

the associated CDF by T (µ) =
∑

µ′≤µ τ(µ′). Similarly, ∆(Θ)×∆(Θ) is endowed with

the product order derived from the order on each dimension. Then, for any joint

distribution τ ∈ ∆(∆(Θ)×∆(Θ)) the associated (joint) CDF is given by

T (µ) = T (µ1, µ2) =
∑

µ′1≤µ1,µ′2≤µ2

τ(µ′1, µ
′
2).

With these definitions in hand, the belief-dependence bounds can be defined. Sim-

ilar to the Fréchet-Hoeffding bounds, these bounds are defined for given marginal

distributions.

If all conditional distributions are equal to their (upper or lower) Fréchet-Hoeffding bound (fixing
the conditional marginal distributions), then I say the information structures attains its bound.

50Conversely, although the information structure from Table 1 attains the lower Fréchet-Hoeffding
bound, the induced belief distribution does not attain the Fréchet-Hoeffding bound.



27

Definition 6. Fix two univariate distributions over beliefs τ1, τ2 ∈ ∆(∆(Θ)) and a

prior π ∈ ∆(Θ). The lower belief-dependence bound is defined as

T (µ1, µ2) = max
0≤L≤K

max {T 1(µ1, µ2;L), T 2(µ1, µ2;L)} , (8)

where for each51 L = 0, . . . , K,

T 1(µ1, µ2;L) =
∑
µ′1≤µ1

τ1(µ′1)
L∑
k=1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
L∑
k=1

µ′2(θk)−
L∑
k=1

π(θk),

and (9)

T 2(µ1, µ2;L) =
∑
µ′1≤µ1

τ1(µ′1)
K∑

k=L+1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
K∑

k=L+1

µ′2(θk)−
K∑

k=L+1

π(θk).

The upper belief-dependence bound is defined as

T (µ1, µ2) = min
1≤L≤K

min
{
T 1(µ1, µ2;L), T 2(µ1, µ2;L)

}
, (10)

where for each52 L = 0, . . . , K,

T 1(µ1, µ2;L) =
∑
µ′1≤µ1

τ1(µ′1)
L∑
k=1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
K∑

k=L+1

µ′2(θk),

and (11)

T 2(µ1, µ2;L) =
∑
µ′1≤µ1

τ1(µ′1)
K∑

k=L+1

µ′1(θk) +
∑
µ′2≤µ2

τ2(µ′2)
L∑
k=1

µ′2(θk).

A few observation are in order. First, as argued in the previous section, the goal is

to tighten the usual Fréchet-Hoeffding bounds using the restrictions imposed by the

actual information structures and Bayesian updating. Thus, the belief-dependence

bounds should be tighter, which is indeed the case. Formally, for the lower bound

we have that F (µ1, µ2) ≤ T (µ1, µ2) since F (µ1, µ2) = maxL∈{0,K} T (µ1, µ2;L) ≤
T (µ1, µ2). For the upper bound the reversed inequality, F (µ1, µ2) ≥ T (µ1, µ2), holds

51By convention, empty sums are defined to be zero.
52Again, by convention, empty sums are defined to be zero.
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because F (µ1, µ2) = min
{
T 1(µ1, µ2;K), T 2(µ1, µ2;K)

}
≥ T (µ1, µ2). Second, if the

marginal distributions are equal, i.e. τ1 = τ2, then the upper belief-dependence bound

is actually the same as the upper Fréchet-Hoeffding bound. Formally:

Lemma 1. Fix an economic environment E and a full-support prior π ∈ ∆(Θ).

Consider two univariate distributions τ1, τ2 ∈ ∆(∆(Θ)) such that τ1 = τ2 and suppose

that Eτ1 [µ1] = π. Then, the upper belief-dependence bound is the usual upper Fréchet-

Hoeffding bound, i.e. T = F .

Furthermore, these bounds are indeed necessary conditions for distributions over

beliefs to be induced by any information structure.

Proposition 2. Fix an economic environment E and a full-support prior π ∈ ∆(Θ).

τ ∈ ∆(∆(Θ)×∆(Θ)) is induced by an information structure only if53

1.
∑

µ1,µ2
τ(µ1, µ2)µ1 =

∑
µ1,µ2

τ(µ1, µ2)µ2 = π, and

2. T - T - T .

Thus, these bounds gives rise to a problem for finding an upper bound of the

pure-persuasion design problem:

Corollary 2. Fix a design environment D. Then,

sup
I∈I

V (I) ≤ V (π) := sup
τ∈∆(∆(Θ)2)

∑
µ1,µ2

τ(µ1, µ2)ν(µ1, µ2)

s.t.
∑
µ1,µ2

τ(µ1, µ2)µ1 =
∑
µ1,µ2

τ(µ1, µ2)µ2 = π,

and T - T - T .

This corollary shows that the designer solves the (relaxed) problem as if she

chooses marginal belief distributions for each receiver subject to the familiar Bayes

plausibility conditions. Moreover, the beliefs across the two receivers cannot be too

dependent so that the joint distribution satisfies the belief-dependence bounds. The

53Here, a slight abuse of notation appears: the belief bounds are formally only defined for two
marginal beliefs. In the statement there is only the joint distribution τ . The belief bounds correspond
to the bounds defined by using the two marginals distributions derived from τ .
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constraints on the distributions of beliefs are tractable, especially if the designer util-

ity ν (as a function on belief space) has special properties.

For two-dimensional real-vectors it is well known54 that the stochastic order -

(recall Definition 5) has a dual characterization in terms of utility functions. In

particular, F - G ⇐⇒ EF [w(x, y)] ≤ EG[w(x, y)], for all Bernoulli utility functions

w : R2 → R that are supermodular. Meyer and Strulovici (2015) extend this result

to distribution over a finite, n-dimensional lattice. Since the order on beliefs was

assumed to be a total order, Meyer and Strulovici’s results apply to the setting of

this paper. Thus, if ν in Corollary 2 is supermodular, then the pure persuasion design

problem can be simplified by first solving

sup
τ1,τ2∈∆(∆(Θ))

∑
µ1,µ2

τ(µ1, µ2)ν(µ1, µ2)

s.t.
∑
µ1

τ1(µ1)µ1 =
∑
µ2

τ2(µ2)µ2 = π,

and T = T ,

and then verifying whether the resulting τ is induced by an information structure.

Symmetrically, if ν is submodular the last constraint would be replaced by T = T . In

either case, the problem is simplified because the choice set contains only marginal

distributions.55

Since the utility function ν is an object derived from the primitive objects stated

in a design environment D, I introduce a broad class of environments which provides

easy verifiable sufficient conditions on primitives to ensure that the derived object

ν satisfies sub- or supermodularity whenever the primitive function v satisfies these

properties. In addition, a subclass of these environments allows me to provide an

upper bound on the cardinality of the signal space (see Example 5).

Definition 7. An economic environment E = 〈Θ, (Ai, ui)i∈N〉 is monotone if

1. the states of nature Θ are endowed with an total order,

54In probability theory, this is known at least since Cambanis et al. (1976) and Tchen (1980).
55The concavification approach of Kamenica and Gentzkow (2011) can be useful here as well as

it gives an (even more) relaxed version of the actual designer’s problem. It suggests solving the
concavification approach and then checking whether the resulting distribution is induced by an
information structure (and therefore has to satisfy the belief bounds).



30 The Case of Pure Persuasion

2. for each player i ∈ N , the set of actions Ai is endowed with an total order, and

3. for each player i ∈ N , the utility function has increasing differences in (ai, θ),

i.e. for all (ai, θ), (a
′
i, θ
′) ∈ Ai ×Θ and all a−i ∈ A−i,

a′i ≥ ai and θ′ ≥ θ =⇒ ui(a
′
i, a−i, θ

′) + ui(ai, a−i, θ) ≥ ui(a
′
i, a−i, θ) + ui(ai, a−i, θ

′).

A design environment D = 〈E , π, v〉 is monotone if

1. the economic environment E is monotone, and

2. the designer’s utility function v : A → R is increasing56 with respect to the

product order induced by the orders on the set of actions Ai, i.e. for all (a1, a2) ∈
A, a′i ≥ ai, for all i = 1, 2 =⇒ v(a′1, a

′
2) ≥ v(a1, a2).

This class of environments here is quite general,57 but specific enough to translate

the preference for complementarities from action space to belief space as formally

stated in the next proposition. This proposition, therefore, provides a simple way to

check the primitives to ensure that the derived Bernoulli utility in in belief space is

either sub- or supermodular.

Proposition 3. Consider a monotone design environment D. Suppose the designer’s

utility v : A → R is supermodular then the derived utility ν : ∆(Θ) ×∆(Θ) → R on

belief space (endowed with the first-order stochastic dominance order) is supermodular,

where ν(µ1, µ2) := min(ai∈Ri(µi))i∈N
v(a1, a2). Similarly, if v is submodular, then ν is

submodular as well.

In the general problem, Example 5 illustrates that using recommendations similar

to the usual revelation principle does not work. For monotone design environments

with a restriction on information structures, action recommendations provide a rich

enough signal space. Action recommendations turn out to be useful even when work-

ing in belief space as will be illustrated in Subsection 4.2.58 For this, say that an

56Only monotonicity of v is needed for all of the following analysis. The definition uses increas-
ingness to simplify the notation.

57Supermodular games usually have an underlying economic environment that is monotone. How-
ever, the class of monotone environments is more general since it does not specify increasing differ-
ences in (ai, a−i), which is assumed to transform an economic environment to supermodular game.

58Whether this revelation principle argument is useful for working directly in signal space is an
open question.
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information structure I is direct if for every i ∈ N , Si ⊆ Ai and for every signal

a = (a1, a2), it holds that min(a′i∈Ri(si|Ii,π))
i∈N

v(a′1, a
′
2) = v(a). Then, the following

proposition is akin to a standard revelation principle.

Proposition 4 (Revelation Principle). Suppose the design environment D is mono-

tone. Restrict the choice of information structures to information structures that give

rise to posteriors that are totally ordered by first-order stochastic dominance for each

player.59 Then, there exists an information structure I with value V (I) if and only if

there exists a direct information structure Î such that v(I) = v(Î).

This result is interpreted slighlty differenlty the usual interpretation of the reve-

lation principle as in Myerson (1982) or Kamenica and Gentzkow (2011). Here, the

designer sends action recommendations to the receivers like in the usual version, but

the receivers do not have to be obedient and follow the recommendation. Instead,

whatever action the receiver chooses, for the designer the action will be at least as

good as if the receiver had followed the recommendation.

4.2 The Problem of a CRO solved

Now, the problem of the CRO introduced Subsection 1.2 can be solved. Recall that the

economic environment E can be summarized by the two game tables in Subsection 1.2.

This economic environment is actually a monotone one. Furthermore, the prior of

both pharmaceutical companies was specified as π = 1/3, thus it remains to specify

the preferences for the designer (i.e. the CRO) to get a design environment. For now,

assume that preferences are such that the CRO prefers further research over dropping

the project for both companies, i.e. v(R, ·) > v(D, ·) v(·, R) > v(·, D), which makes

the design environment monotone as well. Using Figure 1, it is easy to obtain the

CRO utility function defined on belief space, as shown in Figure 3.

Given this derived utility function ν, the optimal information and the corre-

sponding value can be obtained by applying Theorem 1. For an explicit illustra-

tion, I will assume the CRO preferences are symmetric and submodular.60 That is,

v(R,R) + v(D,D) ≤ v(R,D) + v(D,R), which implies that ν is submodular. Here,

59For example, if the state space is binary, then this assumption is without loss of generality.
60In case of supermodular preferences, the concavification approach as explained above can be

applied to derive the optimal information structure directly. Details are available upon request.
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µN

µP0 1

1

v(D,D)

v(D,R)

v(R,D)

v(R,R)

Figure 3: ν, CRO utility function defined on belief space.

the concavification approach is not useful since it would yield a belief distribution

(see Table 6) which cannot be induced by any information structure. This can be

verified by checking that this distribution violates the lower belief-dependence bound.

Thus, a different approach is needed for this case. By Proposition 4, it is sufficient to

Table 6: Result from concavification approach for submodular preferences.

Belief of Novarty

0 2/3

Belief of Pfizr
0 0 1/2

2/3 1/2 0

consider marginal belief distributions with binary support only: one supported belief

leads to actions D in the worst-case and the other leads to action R in the worst-case.

Therefore, for each receiver we need to consider beliefs (µDi , µ
R
i ) ∈ [0, 2/3) × [2/3, 1]

only.61 Moreover, it is easy to see that distributions leading to both actions with

positive probability are better than just sticking to the prior (on each dimension).

Thus, (µDi , µ
R
i ) ∈ [0, 1/2)× [2/3, 1] by Bayes plausibility. Using Theorem 1 the solution

is readily available computationally. However, in this case the problem can be solved

directly using Corollary 2. As binary signals suffice and the problem has only states

of nature, the bounds of Proposition 2 coincide with the characterization of Arieli

61As before, we change the tie-breaking assumption here, which simplifies the notation, but does
not change the essence of the argument.
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et al. (2020).62 First, the lower belief-dependence bound63 has to be binding due to

submodularity. Furthermore, it has to be strictly tighter at some point than the usual

Fréchet-Hoeffding lower bound, otherwise Table 6 would be the solution. Given the

binary signals per receiver and the possible values for these, the only point where the

bound is binding is at (µD1 , µ
D
2 ). For the other cases the Fréchet-Hoeffding bound is

the same as the belief-dependence bound. Thus, letting τi denote the marginal distri-

butions, τ(µD1 , µ
D
2 ) = τi(µ

D
1 )
(
1− µD1

)
+τ2(µD2 )

(
1− µD2

)
−(1− π) , has to hold for any

possible joint distribution. This allows me to simplify the program as stated in Theo-

rem 1 by making the problem separable between the two agents.64 The reformulated

program becomes

sup
τ1,τ2∈∆(∆(Θ))

∑
µ1

τ1(µ1)f(µ1) +
∑
µ2

τ2(µ2)f(µ2) s.t.
∑
µ1

τ1(µ1)µ1 =
∑
µ2

τ2(µ2)µ2 = π,

where f(µ) := 1 [µ < 2/3] (2v + µ− 1) + 1 [µ ≥ 2/3] (1− µ) using a normalization on

the payoffs for the CRO.65 The solution to this program determines the optimal

marginal distributions, which are then combined to a joint distribution via the lower

belief-dependence bound. Due to the established separability, the reformulation can

be solved with the concavification technique from Kamenica and Gentzkow (2011)

yielding µD,∗i = 0 and µR,∗i = 2/3. By Bayes plausibility this gives the same marginal

distribution as in Table 6, but these marginals must be put together with the lower

belief-dependence bounds. This yields the optimal information structure as foreshad-

owed in the introduction and stated in Table 2.

5 Discussion

In this section, I discuss some extensions of the model and highlight some conceptual

aspects.

62Arieli et al. (2020) discuss details in their Appendix B.
63For the binary state case first-order stochastic dominance is a total order. By Lemma 2, only

T 1 has to be considered for the lower bound.
64Derivations are shown in Subsection B.2.
65In particular, v(D,D) = −1, v(R,R) = 0, and v(R,D) = v(D,R) =: v ∈ [−1/2, 0]. This is

without loss of generality.
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5.1 Extension to Multiple Receivers

In this paper, I have focused only on two players only. This simplifies the notation

significantly. The solution concept introduced in Section 2 readily extends to any

finite number of players if the definitions of belief-free rationalizability (Equation 1)

and rational-extended beliefs (Definition 2) are adapted to allow for general correlated

beliefs about the opponents’ actions. Moreover, the general design problem discussed

in Section 3 can be adjusted accordingly to multiple receivers. However, the bounds

in Section 4 do not extend to multiple players without adaption. Of course, the

functional form of the belief bounds is specific to two receivers, but a similar approach

as in the proof of Proposition 2 can be adapted. To derive these bounds an extension

of Joe (1997, Theorem 3.11) to higher dimensions is necessary. Deriving these bounds

explicitly and studying their properties is left for future research.

5.2 Common Belief of Rationality

Throughout this paper, I operated from the assumption that the economic environ-

ment is common knowledge among the players. In the examples this did not matter

too much, but it this knowledge is crucial for the solution concept, which also requires

common knowledge of rationality. A slight adaption of Battigalli et al. (2011, Section

3.1–3.2, see also Section 4.2) shows that the individual robust prediction corresponds

to the behavioral implications of common belief of the economic environment and

rationality, as well as knowledge of the marginal information structure. For certain

economic environments, this has important consequences for the design of information

structures. To see this, consider the following economic environment:

0 −1 0 0

1 −1 2 0

0 −1 0 0

−2 −1 −1 0

Novarty
R D

Novarty
R D

Pfizr
R

D

θ = 1 θ = 2

The payoffs for Pfizr are the same as in the CRO example, however Novarty now has

an (ex-post) dominated action: R is always worse thanD. For the same prior as before

(π = 5/9) the robust prediction without any information would be {R} for Pfizr (and,
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of course, D for Novarty). Thus, without providing any information the designer

gets the best possible outcome. Suppose now, that the designer does not assume

common knowledge of rationality among the receivers but still assumes rationality and

knowledge of the marginal information structure for each receiver. The corresponding

(even more) robust predication can be obtained by dropping part (2) in the definition

of Definition 2. In this example, this version of robust prediction (interpreted as a

function of first-order beliefs) for Pfizr yields the same as in the running example in

the main text of this article. Therefore, if the designer is concerned about robustness

under these less restrictive assumptions, she will engage in Bayesian Persuasion á

la Kamenica and Gentzkow (2011) with Pfizr. This means that the designer will

optimally reveal the state of the drug being ineffective sometimes, which implies that

Pfizr will drop the project occasionally. This is in contrast to the behavior under

the assumption of common knowledge of rationality, where Pfizr will conduct further

research with certainty. What is the right optimal information structure for the

designer? This depends on the assumptions the designer wants to make. In this

paper, the designer imposes common knowledge of rationality.

5.3 Robust Information Design

The key aspect of robust mechanism design as initiated by Bergemann and Morris

(2005), and the Wilson (1987)-doctrine more generally, is relaxing the implicit com-

mon knowledge assumption to obtain more realistic models. Given the discussion in

the previous subsection, the model presented here can be interpreted likewise, but in

the realm of information design. In robust mechanism design, the implicit assump-

tions are relaxed by considering a sufficiently rich Harsanyi-type space. In contrast, in

information design the Harsanyi-type space is the actual designed information struc-

ture. Mathevet et al. (2020) provide a method to study this design problem. My

model can be interpreted as relaxing the common knowledge assumption about the

designed information structure. But to remain in the realm of information design,

the players still know their designed marginal information structure. The solution

concept proposed in this paper captures these assumptions exactly as explained in

the previous section. In addition, the adversarial selection assumption reflects the

robustness aspect.
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5.4 Limited Commitment and Adversarial Robustness

Due to the bilateral arrangement the information designer is effectively limited to

commit only to the marginals of the (grand) information structure. This limited com-

mitment might open up the possibility of communicating more than just the marginal

information structure to the respective receivers. For example, receivers might en-

gage in forward-induction upon seeing the proposed marginal information structure.

If this additional communication is explicitly account for then several solution con-

cepts are available for the resulting communication game. Picking one such solution

concept over the others is problematic in the view of robustness. However, any im-

plied receiver’s behavior under any solution concept that maintains common belief

of rationality and knowledge of the marginal information structure must be within

the individual robust prediction. Thus, the approach in this paper is robust to the

selection across these solution concepts as well. Furthermore, in any such communi-

cation game the assumptions about receiver’s knowledge of the designer’s preferences

becomes crucial as well.66 Again, the proposed design approach sidesteps this issues

using the adversarial approach in combination with the robustness incorporated in

the individual robust prediction.

Thus, allowing for this extraneous communication and making this appropriate

assumptions explicit is in contrast to the robust design considered in the main text.

However, making these stronger assumptions might be of interest for particular ap-

plications. Since this is beyond the scope if this paper, it is left for future research.

A Proofs

Proof of Proposition 1. The statement is trivial if |Θ| = 1, so suppose |Θ| > 1.
The first part follows directly from the definition, since BFRi depends only on

the economic environment and the rational-extended beliefs exactly capture only the
beliefs about the states of nature, which are the same by assumption.

For the second part, fix θ′ ∈ Θ such that

µ :=
ψ1(s1|θ′)π1(θ′)∑
θ ψ1(s1|θ)π1(θ)

6= ψ′1(s′1|θ′)π′1(θ′)∑
θ ψ
′
1(s′1|θ)π′1(θ)

=: µ′.

66This, of course, raises the next level question, of whether this assumption is common knowledge
and whether the designer’s rationality is (common) knowledge.
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Consider the following economic environment: Ai = {µ, µ′} and payoffs are given by
ui(ai, a−i, θ) = (ai−1[θ = θ′])2. By construction only the belief about the state matters
for best-replies, so the difference between the induced belief on Θ and an rational-
extended belief does not matter. Now, note that µ (as action) is the unique best-reply
to µ (as belief). Then, by construction R1(s1|I1, π1) = {µ} and R1(s′1|I ′1, π′1) = {µ′}
and the conclusion follows. �

Proof of Theorem 1. I only proof (1)+(2). The rest is obvious or follows from the
previous discussion.

Fix an information structure I ∈ I and let λ ∈ ∆(∆(Θ) × ∆(Θ) × Θ) be the
induced distribution. Then (1) is satisfied, because

∑
µ1,µ2

λ(µ1, µ2, θ) =
∑
µ1,µ2

∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ)

 = π(θ)
∑
s1,s2

Ψ(s1, s2|θ) = π(θ).

For (2), consider µ1 ∈ ∆(Θ). Then,

∑
µ2

λ(µ1, µ2, θ) =
∑
µ2

∑
i∈N

∑
si:µsi=µi

π(θ)Ψ(s1, s2|θ)

 =
∑

s1:µs1=µ1

∑
s2

π(θ)Ψ(s1, s2|θ)

=
∑

s1:µs1=µ1

[
µs1(θ)

∑
s2,θ′

π(θ′)Ψ(s1, s2|θ′)

]
= µ1(θ)

∑
s1:µs1=µ1

[∑
s2,θ′

π(θ′)Ψ(s1, s2|θ′)

]
=µ1(θ)

∑
µ2,θ′

λ(µ1, µ2, θ
′).

The argument for player 2 is the same.
Conversely, suppose there exists λ with conditions (1) and (2), I will construct

an information structure which induces λ. For this let S1 = supp marg1 τ and S2 =

supp marg2 τ and define the conditional signal distribution as Ψ(µ1, µ2|θ) = λ(µ1,µ2,θ)
π(θ)

.

Note that condition (1) implies that Ψ gives rises to valid distributions. Furthermore,
for signals which happen with positive probability condition (2) gives

µµi(θ) =

∑
µ−i

λ(µi, µ−i, θ)∑
µ−i,θ̃

λ(µi, µ−i, θ)
= µi(θ).

Hence,
∑

i∈N
∑

si:µsi=µi
π(θ)Ψ(s1, s2|θ) = π(θ)Ψ(µ1, µ2|θ) = λ(µ1, µ2, θ) so that the

constructed information structure induces λ. �



38

For the following consider the following definitions. Given τ1, τ2 ∈ ∆(∆(Θ)) and
a prior π ∈ ∆(θ) define

Π(L) =
L∑
k=1

π(θk) and T (µ1, µ2) =
∑
µ′1≤µ1

∑
µ′2≤µ2

τ(µ′1, µ
′
2)

T1(µ1) =
∑
µ′1≤µ1

τ1(µ′1) and T2(µ2) =
∑
µ′2≤µ2

τ2(µ′2)

M1(µ1, L) =
∑
µ′1≤µ1

τ1(µ′1)
L∑
k=1

µ′1(θk) and M2(µ2, L) =
∑
µ′2≤µ2

τ2(µ′2)
L∑
k=1

µ′2(θk).

With these definitions, the elementary functions of the belief-dependence bounds can
be restated as

T 1(µ1, µ2;L) = M1(µ1, L) +M2(µ2, L)− Π(L)

T 2(µ1, µ2;L) = T1(µ1)−M1(µ1, L) + T2(µ2)−M2(µ2, L)− [1− Π(L)]

T 1(µ1, µ2;L) = M1(µ1, L) + T2(µ2)−M2(µ2, L)

T 2(µ1, µ2;L) = T1(µ2)−M1(µ2, L) +M2(µ1, L),

for every L = 0, . . . , K.67

Proof of Lemma 1. By Symmetry T1 = T2 and similar for Mi. Thus, I will drop
the indices. Without loss say µ1 ≤ µ2, then T (µ1) ≤ T (µ2). Fix any L and then
T 1(µ1, µ2;L) = M(µ1)+T (µ2)−M(µ2) ≥M(µ1)+T (µ1)−M(µ1) = T (µ1). Similarly,
T 2(µ1, µ2;L) = T (µ1)−M(µ1) +M(µ2) ≥ T (µ1)−M(µ1) +M(µ1) = T (µ1). �

Lemma 2. Fix two univariate belief-distributions τ1, τ2 ∈ ∆(Θ) and a full-support
prior π ∈ ∆(Θ). Suppose that (i) Eτi [µi] = π, and (ii) suppi τi is totally ordered by
first-order stochastic dominance, then for every L = 0, . . . , K

Ti(µi)−Mi(µi, L) ≤ Ti(µi) [1− Π(L)] . (12)

Furthermore, T 2(µ1, µ2;L) ≤ maxL T 1(µ1, µ2;L).

Proof. Using the total order and (i), for every L and every µi ∈ supp τi

Eτi [
∑
k≤L

µ′i(θk)|µ′i ≤ µi]P(µ′i ≤ µi) + Eτi [
∑
k≤L

µ′i(θk)|µ′i > µi]P(µ′i > µi) =
∑
k≤L

Eτi [µ′i(θk)] = Π(L),

67Recall that a summation over an empty set is zero.
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and by first-order stochastic dominance we also know that

Eτi [
∑
k≤L

µ′i(θk)|µ′i ≤ µi] ≥
∑
k≤L

µi(θk) ≥ Eτi [
∑
k≤L

µ′i(θk)|µ′i > µi].

Thus, Π(L) ≤ Eτi [
∑

k≤L µ
′
i(θk)|µ′i ≤ µi] = Mi(µi,L)/Ti(µi), which implies the first in-

equality in Equation 12.
For the second part, the inequality Equation 12 gives

T 2(µ1, µ2;L) = T1(µ1)−M1(µ1, L) + T2(µ1)−M2(µ1, L)− [1− Π(L)]

≤ T1(µ1) [1− Π(L)] + T2(µ2) [1− Π(L)]− [1− Π(L)]

≤ T1(µ1) + T2(µ2)− 1 ≤ max
L

T 1(µ1, µ2;L).

�

Proof of Proposition 2. Consider τ that is induced by an information structure. Since
it is induced by an information structure, there exists λ ∈ ∆(∆(Θ)×∆(Θ)×Θ) with
marginal distribution on ∆(Θ) × ∆(Θ) given by τ and properties (1) and (2) as
stated in Theorem 1. By Equation 5 the marginal conditions (1) of Proposition 2 are
satisfied. Now, define

λ1(µ1, θ) = µ1(θ)
∑
µ2

τ(µ1, µ2), and λ2(µ2, θ) = µ2(θ)
∑
µ1

τ(µ1, µ2).

Since τ is a (bivariate) marginal of λ and due to (2) of Theorem 1, λ1 and λ2 are the
two other bivariate marginals of λ.

Now, by Joe (1997, Theorem 3.11), λ with the given bivariate marginals exists
only if for every L = 0, . . . , K and every µ1, µ2 ∈ ∆(Θ),

max {0, T (µ1, µ2)− [T1(µ1)−M1(µ1, L)] , T (µ1, µ2)− [T2(µ2)−M2(µ2, L)] ,

M1(µ1, L) +M2(µ2, L)− Π(L)}
≤ (13)

min {T (µ1, µ2),M1(µ1, L),M2(µ2, L),

T (µ1, µ2) + [1− Π(L)]− [T1(µ1)−M1(µ1, L)]− [T2(µ2)−M2(µ2, L)]} .

Now, it remains to prove that existence of λ and Equation 13 imply the bounds
T % T % T . By way of contradiction, suppose the bounds are violated, then we have
(at least) one of the following cases for some L = 0, . . . , K and some µ1, µ2 ∈ ∆(Θ)

• If T (µ1, µ2) > T 1(µ1, µ2;L) = M1(µ1, L) + T2(µ2)−M2(µ2, L), then

T (µ1, µ2)− [T2(µ1)−M2(µ1, L)] > M1(µ2, L).
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• If T (µ1, µ2) > T 2(µ1, µ2;L) = T1(µ2)−M1(µ2, L) +M2(µ1, L), then

T (µ1, µ2)− [T1(µ1)−M1(µ1, L)] > M2(µ2, L).

In either case, Equation 13 is violated. Similarly, if T (µ1, µ2) < T 1(µ1, µ2;L) =
M1(µ1, L) + M2(µ2, L) − Π(L) or T (µ1, µ2) < T 2(µ1, µ2;L) = T1(µ1) −M1(µ1, L) +
T2(µ2)−M2(µ2, L)− [1− Π(L)] then Equation 13 is violated.

Thus, if the bounds are not satisfied at any point, Equation 13 is violated. This
means that there is no trivariate distribution with the marginals given by τ , λ1, and
λ2. However, this is in contradiction with the existence of λ. �

Proof of Proposition 3. I will only prove the case of supermodularity. Consider µi ∈
∆(Θ) and η : Θ → ∆(A−i) such that supp ν(·|θ) ⊆ BFR−i for all θ ∈ Θ. Since
supermodularity is preserved under summation (i.e. expectation) , the best-reply is
increasing (in the strong set-order) in first-order beliefs µi (holding η fixed), see van
Zandt and Vives (2007). Thus the robust prediction correspondence is increasing
(in the strong-set order). Now, let bi(µi) = min {ai ∈ Ri(µi)}, which is increasing in
µi. Because v is increasing, ν(µ1, µ2) = v(b1(µ1), b2(µ2)). If µ1 first-order stochastic
dominates µ′1, then b1(µ1) ≥ b1(µ′1). Thus,

ν(µ1, µ2)− ν(µ′1, µ2) = v(b1(µ1), a2(µ2))− v(b1(µ′1), a2(µ2)),

is increasing in µ2 because b2(·) is and v is supermodular. �

Proof of Proposition 4. One direction is obvious. For the other fix an information
structure I. Then, define68 S1

i = {si ∈ Si : a1
i ∈ Ri(si)} and for 1 < k ≤ Ji

Ski =
{
si ∈ Si : aki ∈ Ri(si) and ali 6∈ Ri(si) for all l < k

}
.

Now, let Ŝi =
{
aji ∈ Ai : Sji 6= ∅

}
⊆ Ai and set the signal distribution to Ψ̂(aj11 , a

j2
2 |θ) =∑

i

∑
si∈S

ji
i

Ψ(s1, s2|θ). Now, for a given aji ∈ Ŝi, the induced first-order belief (call it

µ) will be a convex combination of beliefs (i.e µsi for si ∈ Sji ). Since these beliefs are
totally ordered, one of these beliefs is the lowest according to first-order stochastic
dominance; call it µ. Thus, the convex combination (i.e. µ) is also greater than µ.
As shown in Equation A, the robust-prediction correspondence is increasing. Thus,
Ri(µ) ≤ Ri(µ) in the strong set order.

By construction, we have ami 6∈ Ri(µ) for m < j implying that ami 6∈ Ri(µ).

Furthermore, we know that aji is conceivable for each µsi for si ∈ Sji . That is, for
each such si ∈ Sji there exists ηsi(·|·) : Θ → ∆(A−i) such that aji ∈ BRi(µsi ◦ ηsi).
Consider69 µ̃ =

∑
si∈Ŝ

Ai
i
λsiµsi ◦ ηsi , which has marginal µ by construction. And

68The superscripts refer to the indexing set of the actions, i.e. Ai = {a1i , . . . , a
Ji
i }.

69Let λsi denote the coefficients of the convex combination.
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since aji is a best-reply to each belief separately, it’s also a best-reply to the convex
combination. Proving aji ∈ Ri(µ).

So we established aji ∈ Ri(a
j
i ) and ami 6∈ Ri(a

j
i ), for all m < j. Thus, by Defini-

tion 7 for any (a1, a2) ∈ Ŝ1 × Ŝ2 mina′i∈Ri(ai) v(a′1, a
′
2) = v(a1, a2). Proving that the

information structure is direct. That the values are the same follows trivially from
the construction. �
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B ONLINE APPENDIX

B.1 A Foundation for the Individual Robust Predictions

In this section, I provide a foundation for the individual robust predictions in a similar
spirit as the literature on informational robustness and Bayes Correlated Equilibrium.
First, I need a result relating BFR to robustness across all information structures and
across all Bayes-Nash equilibria (Proposition 5). This part is closet to the literature on
informational robustness in the sense it takes the perspective of an outside observer.
Second, I will give a foundation for the individual robust-predictions by adding back
the marginal information structure of Player 1 (Theorem 2). Thus, this can be seen as
a robustness from the player’s perspective because he knows his marginal information
structure. Since these foundations rely on non-common priors, I also need to take
care of zero probability events. This is in contrast to the analysis in the main text
and requires different definitions. Whenever zero probability events can be ruled out,
all the following definitions reduce to the definitions of Section 2.

B.1.1 Robustness for an Outside Observer

Starting with an economic environment, a Bayesian game is obtained by adding priors
for each player πi ∈ ∆(Θ) and specifying a (grand) information structure with possible
heterogeneous signal functions.

Definition 8. Fix an economic environment E. A (grand) generalized information
structure (for E) is I = 〈(Si,Ψi)i∈N〉, where for each player i ∈ N ,

1. Si is a finite set of signals, and

2. Ψi : Θ→ ∆(S1 × S2) is a conditional signal distribution.

A Bayesian game G = 〈E , I, (πi)i∈N〉 is given by (i) an economic environment E,
(ii) a generalized information structure I, and (iii) a prior πi ∈ ∆(Θ) for each player
i ∈ N .

A generlized information structure together with the two priors gives rises to a
standard type space á la Harsanyi (1968) but without a common prior.70 Without
common priors and signal distributions the definition of equilibrium needs to account
for zero probability events. For complete information games, Brandenburger and
Dekel (1987) introduced a posteriori equilibrium to rule out the play of dominated
actions after a zero probability events. The definition of equilibrium in this paper
will be an extension to incorporate uncertainty about the states of nature. But first,
we need to introduce a tool to define beliefs even in case of zero probability events.

70Recently, Piermont and Zuazo-Garin (2020) allow for even more disagreement by allowing for
lack of common knowledge of the Harsanyi type space and the states of nature.
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Definition 9. Fix an economic environment E, a player i, a prior πi ∈ ∆(Θ) and
a generalized information structure I. A conditional probability system (CPS) for
(πi, I) is a mapping µi : Si → ∆ (Θ× S−i) such that for every (θ, si, s−i) ∈ Θ×S1×S2,

µi(θ, s−i|si)

∑
θ′,s′−i

πi(θ
′)Ψi(si, s

′
−i|θ′)

 = πi(θ)Ψi(si, s−i|θ).

That is, a CPS defines beliefs about the state of nature and the opponent’s signal
realization for every signal relation of the given player. In addition, the beliefs have
to be updated via Bayes’ rule whenever possible. To formally state the appropriate
version of equilibrium, it only remains to define strategies. A (behavioral) strategy
for player i in a Bayesian Game G is a mapping βi : Si → ∆(Ai).

Definition 10. Fix an economic environment E, priors πi ∈ ∆(Θ) for each player i ∈
N , and an information structure I. A Bayes-Nash equilibrium (BNE) for (π1, π2, I)
is a tuple (βi, µi) for each player i ∈ I such that

1. βi is a strategy,

2. µi is a CPS for (πi, I), and

3. βi is optimal (given µi and β−i), i.e. for each si ∈ Si

ai ∈ supp βi(·|si) =⇒ ai ∈ arg max
a′i

∑
θ,s−i,a−i

µi(θ, s−i|si)β−i(a−i|s−i)ui(a′i, a−i, θ).

Let BNE(π1, π2, I) be the set of all BNEs for (π1, π2, I).71

Now, the first result states that belief-free rationalizability characterizes all actions
that can be played in any Bayes-Nash equilibrium for any information structure (and
any prior beliefs). Thus, without making any assumptions about the information
structure an outside observer can not make any prediction that is a refinement of
belief-free rationalizability. In this sense, belief-free rationalizability is robust to the
specification of the (generalized) information structure.72

Proposition 5. Fix an economic environment E. For every player i, ai ∈ BFRi iff
there exists priors (π1, π2), an information structure I and a signal si ∈ Si such that
ai ∈ supp βi(·|si) for some βi ∈ BNEi(π1, π2, I).

71The dependence on the economic environment is suppressed in this notation since it will be fixed
throughout. Furthermore, I will slightly abuse notation and write β = (β1, β2) ∈ BNE(π1, π2, I)
if there exists CPS’ µ = (µ1, µ2) such that (β, µ) ∈ BNE(π1, π2, I). Similarly, we will write βi ∈
BNEi(π1, π2, I) if there exists β−i and µ such that (β1, µ1, β2, µ2) ∈ BNE(π1, π2, I).

72Bergemann and Morris (2017, Section 4.5) informally mention a result along these lines. Bat-
tigalli and Siniscalchi (2003, Proposition 4.2 and 4.3) prove a similar result in a slightly different
setting.
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B.1.2 Robustness from the Player’s Perspective73

Now, we add back the marginal information structure of Player 1 (see Definition 1).
Here as well, we need to take care of zero probability events and therefore rational-
extended beliefs are not appropriate anymore. A version of a conditional probability
system is needed again. Although, now it should only capture beliefs about the state
of nature.

Definition 11. Fix an economic environment E, a prior π1 ∈ ∆(Θ) and a marginal
information structure I1. A marginal conditional probability system (mCPS) for
(π1, I1) is a mapping µ1 : S1 → ∆ (Θ) such that for every (θ, s1) ∈ Θ× S1,

µ1(θ|s1)

[∑
θ′

π1(θ′)ψ1(s1|θ′)

]
= π1(θ)ψ1(s1|θ).

Similar to rational-extended beliefs, mCPS need to be extended as well.

Definition 12. Fix an economic environment E, a prior π1 ∈ ∆(Θ) and a marginal
information structure I1. A rational-extended conditional probability system (rCPS)
for (π1, I1) is a mapping µ1 : S1 → ∆ (Θ× A2) such that

1. µ̃1 = (µ1(·|s1))s1∈S1
is a mCPS for (π1, I1), where µ̃1(·|s1) = margΘ µ1(·|s1) for

all s1 ∈ S1, and

2. for all s1 ∈ S1, suppµ1(·|s1) ⊆ Θ×BFR2.

Finally, these rCPS’ allow to define the individual robust prediction even with
zero probability events.

Definition 13. Fix an economic environment E, a prior π1 ∈ ∆(Θ), and a marginal
information structure I1. A pure strategy b : S1 → A1 is conceivable for (π1, I1)
if there exists a rCPS µ1 for (π1, I1) such that b is optimal given µ1, i.e. for each
s1 ∈ S1,

b(s1) ∈ arg max
a′1

∑
θ,a2

µ1(θ, a2|s1)u1(a′1, a2, θ).

The individual robust prediction is the set of all conceivable strategies and is denoted
by R1(I1, π1).

The goal of this section is to provide a foundation of the individual robust pre-
dictions. That is, it should capture they idea of informational robustness across all
information structures of the opponent (fixing the marginal information structure of
the player). This leads to the idea of an extended information structure.

73This subsection is described from the perspective of player 1. It applies verbatim to player 2 by
switching the player indices.
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Definition 14. Fix an economic environment E and a marginal information structure
I1 = 〈S1, ψ1〉. An extended information structure (for I1) is I = 〈(Ŝi,Ψi)i∈N〉 such
that

1. I is a generalized information structure,

2. S1 ⊆ Ŝ1, and

3. margS1
Ψ1(·|θ) = ψ1(·|θ), for all θ ∈ Θ.

Let I(I1) be the set of extending information structures for I1.

Condition (1) ensures that an extended information structure is indeed a gen-
eralized information structure, whereas conditions (2) and (3) make sure that the
extended information structure incorporates the marginal information structure of
Player 1. A natural interpretation of this definition is that Player 1 conjectures a
grand information structure for given economic environment so that she can analyze
the resulting Bayesian game. However, since she knows exactly what information
she gets about the state of nature, she uses this knowledge to rule out information
structures which do not align with her marginal information structure. Indeed, the
individual robust prediction correspond to all strategies that are conceivable across
all such conjectures. This means that for each conceivable strategy there is an ex-
tending information structure (and a conjectured prior for the opponent)74 and a
corresponding Bayes-Nash equilibrium where this strategy is played.

Theorem 2. Fix an economic environment E, prior π1 ∈ ∆(Θ), and a marginal
information structure I1. b ∈ R1(I1, π1) iff there exists an extending information
structure I ∈ I(I1), a prior π2 ∈ ∆(Θ), and a corresponding BNE βi such that
b(si) ∈ supp βi(·|si) for all si ∈ Si.

Theorem 2 constitutes the main result of this section, because it provides an
informational robustness foundation for the individual robust predictions.

B.1.3 Proofs for Subsection B.1

Since actions are finite it is immediate that the BFR procedure as stated in Equation 1
needs to stop at a finite number of iterations, which directly gives the usual, but
convenient, fixed-point definition of belief-free rationalizability:

BFRi =

{
ai ∈ Ai : ∃µi ∈ ∆(Θ× A−i) s.t.

(1) suppµi ⊆ Θ×BFR−i, (14)

(2) ai ∈ arg max
a′i∈Ai

∑
θ,a−i

µi(θ, a−i)ui(a
′
i, a−i, θ)

}
.

74Recall that the economic environment does not specify priors.
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Proposition 5. Fix an economic environment E. For every player i, ai ∈ BFRi iff
there exists priors (π1, π2), an information structure I and a signal si ∈ Si such that
ai ∈ supp βi(·|si) for some βi ∈ BNEi(π1, π2, I).

Proof. For given priors (π1, π2), information structure I, consider a signal si such
that ai ∈ supp βi(·|si) for some (βi, µ̂i, β−i, µ̂−i) ∈ BNE(π1, π2, I). We show that
ai ∈ BFRi by induction, i.e. ai ∈ BFRn

i for every n. The statement is trivial for
n = 0. So assume the statement is true for n ≥ 0. Consider the following belief
µi ∈ ∆(Θ× S−i × A−i) defined by

µi(θ, s−i, a−i) = µ̂i(θ, s−i|si)β−i(a−i|s−i),

Note that ai is a best-reply to µi by the definition of BNE.
Let mi = margΘ×A−i

µi, then we have

mi(θ, a−i) > 0 =⇒ µi(θ, s−i, a−i) > 0 for some s−i such that β−i(a−i|s−i) > 0,

and by the induction hypothesis a−i ∈ BFRn
−i. Hence, suppµi ⊆ Θ×BFRn

−i. Since,
ai is a best-reply to µi, ai ∈ BFRn+1

i .
Conversely, for every ai ∈ BFRi, there is a justifying belief µaii satisfying (1) and

(2) from BFR.75 Then define a prior by

πi(θ) =
∑

ai∈BFRi

∑
a−i

µaii (θ, a−i)

|BFRi|

and consider the following information structure: Si = BFRi and

Ψi(ai, a−i|θ) =
µaii (θ, a−i)

πi(θ)
|BFRi|−1,

if πi(θ) > 0 and arbitrary otherwise. Note that for every ai ∈ BFRi, we have∑
a−i,θ

πi(θ)Ψi(ai, a−i|θ) = |BFRi|−1 > 0,

so that the CPS is entirely determined by Bayesian updating.

75Here, the equivalent fixed-point definition of BFR stated in Equation 14 is used.
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Now, fix ai ∈ BFR and consider the obedient strategies, i.e. βi(ai|si) = 1[si = ai].
Then,

ai ∈ arg max
a′i∈Ai

∑
θ,a−i

µaii (θ, a−i)ui(a
′
i, a−i, θ)

∈ arg max
a′i∈Ai

∑
θ,a−i

Ψi(ai, a−i|θ)πi(θ)ui(a′i, a−i, θ)

∈ arg max
a′i∈Ai

∑
θ,a−i,s−i

πi(θ)Ψi(ai, s−i|θ)β−i(a−i|s−i)ui(a′i, a−i, θ),

so that the obedient strategy of i is indeed a best-reply to the obedient strategy of
the other player (given the information structure). That is, β (and the CPS derived
from Bayesian updating) constitute a BNE. �

Proof. Fix a marginal information structure Ii and prior π1.
For a given extending information structure I ∈ I(I1), a prior π2, and a corre-

sponding BNE (β, µ̂) consider any selection b(s1) ∈ supp βi(·|s1) for all s1 ∈ S1. For
every s2 ∈ Ŝ2 and every a2 ∈ supp β2(·|s2), a2 ∈ BFR2 by Proposition 5. For each
s1 ∈ S1 consider beliefs µ1(·|s1) ∈ ∆(Θ× A2) defined by

µ1(θ, a2|s1) =
∑
ŝ2

µ̂1(θ, ŝ2|s1)β2(a2|ŝ2).

Then µ1(θ, a2|s1) > 0 implies that there exists s2 ∈ Ŝ2 such that β2(a2|s2) > 0,
which implies that a2 ∈ BFR2. Hence, suppµ1(·|s1) ⊆ Θ× BFR2 for every s1 ∈ S1.
Furthermore, let µ̃1(·|s1) =

∑
a2
µ1(·, a2|s1) for every s1 ∈ S1, then

µ̃1(θ|s1)

[∑
θ′

π1(θ′)ψ1(s1|θ′)

]
=
∑
a2,ŝ2

µ̂1(θ, ŝ2|s1)β2(a2|ŝ2)

[∑
θ′

π1(θ′)ψ1(s1|θ′)

]

=
∑
ŝ2

µ̂1(θ, ŝ2|s1)

[∑
θ′

π1(θ′)ψ1(s1|θ′)

]

=
∑
ŝ2

µ̂1(θ, ŝ2|s1)

∑
θ′,ŝ′2

π1(θ′)Ψ1(s1, ŝ
′
2|θ′)


=
∑
ŝ2

π1(θ)Ψ1(s1, ŝ2|θ) = π1(θ)ψ1(s1|θ),

where the third and last equality use property 3 of an extending information structure
(Definition 14). The fourth equality follows from µ̂1 being a CPS for (π1, I) (see
Definition 9). Thus, µ1 is a rCPS and by construction b(si) is a best-reply to µ1(·|s1)
for each s1 ∈ S1. This proves that b is conceivable.
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Conversely, consider b ∈ R1(I1, π1). By definition of R1 there exists a rCPS µ1

such that b is optimal given µ1. Define BFR−1 = BFR1 \ ∪s1∈S1{b(s1)} and set
Ŝ1 = S1 ∪BFR−1 and Ŝ2 = BFR2.

For player 1, define a conditional signal distribution as follows.

Ψ1(s1, ŝ2|θ) =
µ1(ŝ2, θ|s1)

π1(θ)

∑
θ̃

π1(θ̃)ψ1(s1|θ̃), for all s1 ∈ S1, and

Ψ1(a1, ŝ2|θ) = 0 for all a1 ∈ BFR−1 ,

if πi(θ) > 0 and arbitrary otherwise. Since the marginal of µ1 on θ is a mCPS, we
have that margS1

Ψ1 = ψ1.

Since Ŝ2 ⊆ BFR2, there is a belief µa22 satisfying (1) and (2) from BFR76 for each
a2 ∈ Ŝ2. Then define a prior by

π2(θ) =
∑
a2∈Ŝ2

∑
a1
µa22 (θ, a1)

|Ŝ2|

and consider the following conditional signal distribution for player 2.

Ψ2(s1, a2|θ) =
1

|Ŝ2|
1

|b−1(b(s1))|
µa22 (b(s1), θ)

π2(θ)
, for all s1 ∈ S1, and

Ψ2(a1, a2|θ) =
1

|Ŝ2|
µa22 (a1, θ)

π2(θ)
, for all a1 ∈ BFR−1 ,

if π2(θ) > 0 and arbitrary otherwise.
Since

∑
ŝ1,θ

Ψ2(ŝ1, s2|θ)π2(θ) = |Ŝ2|−1 > 0 for all s2 ∈ Ŝ2, the CPS for player 2 is
determined by Bayesian updating. For player 1, consider the CPS that is defined by
Bayesian updating if

∑
θ̃,ŝ2

π1(θ̃)Ψ1(s1, ŝ2|θ̃) =
∑

θ̃ π1(θ̃)ψ1(s1|θ̃) > 0 and in the other
case for s1 ∈ S1 define

µ̂1(θ, ŝ2|s1) =
∑
a2

µ1(θ, a2|s1)1[a2 = ŝ2].

For a1 ∈ BFR−1 there exists a justifying BFR belief µa11 ∈ ∆(Θ × A2), so take as a
CPS belief77

µ̂1(θ, ŝ2|s1) =
∑
a2

µa11 (θ, a2)1[a2 = ŝ2].

76Again, the equivalent fixed-point definition of BFR stated in Equation 14 is used.
77By construction, these a1 have zero probability under the signal distributions of player 1.
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Now, consider the obedient strategies β1(b(s1)|s1) = 1 if s1 ∈ S1, β1(a1|a1) = 1
if a1 ∈ BFR−1 , and β2(a2|a2) = 1 for every a2 ∈ Ŝ2. It remains to verify that these
strategies are optimal given the CPS (and the strategy of the opponent).

Player 1 For every s1 ∈ S1 with
∑

θ̃,ŝ2
π1(θ̃)Ψ1(s1, ŝ2|θ̃) > 0 we have

b(s1) ∈ arg max
a′1∈A1

∑
θ,a2

µ1(θ, a2|s1)u1(a′1, a2, θ)

∈ arg max
a′i∈Ai

∑
θ,a2

Ψ1(s1, a2|θ)π1(θ)u1(a′1, a2, θ)

∈ arg max
a′i∈Ai

∑
θ,a2,ŝ2

π1(θ)Ψ1(s1, ŝ2|θ)β2(a2|ŝ2)u1(a′1, a2, θ),

where the second line uses the definition of the signal distribution and the belief
in the last line is (equivalent to) the updated belief together with belief in the
strategy of the other player.

For every si ∈ Si with
∑

θ̃,ŝ2
π1(θ̃)Ψ1(s1, ŝ2|θ̃) = 0,

b(s1) ∈ arg max
a′1∈A1

∑
θ,a2

µ1(θ, a2|s1)u1(a′1, a2, θ)

∈ arg max
a′i∈Ai

∑
θ,a2,ŝ2

µ1(θ, a2|s1)1[a2 = ŝ2]u1(a′1, ŝ2, θ)

∈ arg max
a′i∈Ai

∑
θ,ŝ2,a2

µ̂1(θ, ŝ2|s1)β2(a2|ŝ2)u1(a′1, a2, θ).

Like in the last case, for every a1 ∈ BFR−1 a1 is a best-reply to µ̂1 and β2.

Player 2 For every a2 ∈ Ŝ2 we have

a2 ∈ arg max
a′2∈A2

∑
θ,a1

µa22 (θ, a1)u2(a1, a
′
2, θ)

∈ arg max
a′2∈A2

∑
θ

 ∑
a1∈{b(s1)}s1

µa22 (θ, a1)u2(a1, a
′
2, θ) +

∑
a1∈BFR−1

µa22 (θ, a1)ui(a1, a
′
2, θ)


∈ arg max

a′2∈A2

∑
θ

∑
s1∈S1

µa22 (θ, b(s1))

|b−1(b(s1))|
u2(b(s1), a′2, θ) +

∑
a1∈BFR−1

µa22 (θ, a1)u2(a1, a
′
2, θ)


∈ arg max

a′2∈A2

∑
θ

∑
ŝ1∈Ŝ1,a1

π2(θ)ψ2(ŝ1, a2|θ)β1(a1|ŝ1)u2(a1, a
′
2, θ).

So that β (together with the constructed CPS) is indeed a BNE. �
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B.2 Detailed calculations for Subsection 4.2

To simplify notation let τDD := τ(µD1 , µ
D
2 ) and similar for the other three cases and

let τi := τi(µ
D
i ). With this notation,

τDD = τ1(1− µD1 ) + τ2(1− µD2 )− (1− π).

Since marginal distribution average out to the prior: (1− τi)(1− µRi ) + τi(1− µDi ) =
1− π. Hence,

τDD = τ1(1− µD1 ) + τ2(1− µD2 )− (1− π)−
∑
i

(1− τi)(1− µRi ) + τi(1− µDi )

2

=
1

2

[
τ1(1− µD1 )− (1− τ1)(1− µR1 ) + τ2(1− µD2 )− (1− τ2)(1− µR2 )

]
.

Given the normalization on the utility of the designer, the objective becomes −τDD +
v(τDR + τRD). Furthermore, the following equalities hold:

τDR = τ1 − τDD =
1

2

[(
τ1µ

D
1 + 1− µR1 + τ1µ

R
1

)
−
(
τ2(1− µD2 )− (1− τ2)(1− µR2 )

)]
τRD = τ2 − τDD =

1

2

[(
τ2µ

D
2 + 1− µR2 + τ2µ

R
2

)
−
(
τ1(1− µD1 )− (1− τ1)(1− µR1 )

)]
.

Plugging into the objective (ignoring the 1/2 scaling):

v
[(
τ1µ

D
1 + 1− µR1 + τ1µ

R
1

)
−
(
τ1(1− µD1 )− (1− τ1)(1− µR1 )

)]
−
(
τ1(1− µD1 )− (1− τ1)(1− µR1 )

)
+v
[(
τ2µ

D
2 + 1− µR2 + τ2µ

R
2

)
−
(
τ2(1− µD2 )− (1− τ2)(1− µR2 )

)]
−
(
τ2(1− µD2 )− (1− τ2)(1− µR2 )

)
=
[
2vτ1 − τ1(1− µD1 ) + (1− τ1)(1− µR1 )

]
+
[
2vτ2 − τ2(1− µD2 ) + (1− τ2)(1− µR2 )

]
=τ1

(
2v − (1− µD1 )

)
+ (1− τ1)(1− µR1 ) + τ2

(
2v − (1− µD2 )

)
+ (1− τ2)(1− µR2 ),

so that the objective is separable. From the main text, we know that µDi < 2/3

and µRi ≥ 2/3. Thus, we can rewrite the objective as stated in the main text78 with
f(µ) := 1 [µ < 2/3] (2v + µ− 1) + 1 [µ ≥ 2/3] (1− µ). Figure 4 plots this function and
its concavification. Since v ∈ [−1/2, 0] shifts f only vertically, it will not change the
maximizer resulting from the concavification.

78To be precise, the values of f for µ ∈ [1/2, 2/3) can be set arbitrary as long as they are strictly
below the resulting concavification. This can be done because from the analysis in the main text it
is known that µ in this range cannot be optimal.
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Figure 4: f(µ) in dashed blue (with v = −0.05) and concavification thereof in red.
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